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Abstract—Motivated by the fact that modeling and represen-
tation of multi-class signal patterns plays a critical role in Elec-
troencephalogram (EEG)-based brain computer interface (BCI)
systems, the paper proposes the coupling of error correction
output coding (ECOC) with the common spatial pattern (CSP)
analysis. Referred to as the ECO-CSP framework, the ECOC ap-
proach is applied to EEG motor imagery classification problem.
A BCI system designed to operate in real world conditions, must
be able to discriminate multiple tasks and activities. This fact,
expresses the urge to develop/implement classifiers intrinsically
designed for multi-class problems. One of such techniques which
is well regarded in other fields but has not yet been applied to
EEG-based classification is the ECOC. The paper addresses this
gap.The BCI Competition IV-2a dataset is used to evaluate the
performance of the proposed ECO-CSP framework. Our results
show that ECO-CSP achieve similar performance in comparison
to the state-of-the-art algorithms but is extensively simpler with
significantly less computational overhead making it a practical
alternative for real-time EEG motor imagery classification tasks.

Index Terms: Brain-computer interface (BCI), Common
spatial patterns, Electroencephalogram (EEG), Error cor-
rection output coding, Motor Imagery.

I. INTRODUCTION

The human brain is the most intriguing signal processing
system in existence due to its ability to extract/fuse informa-
tion from several streaming signal modalities adaptively and in
real-time. This fact has inspired extensive research on devel-
opment of brain computer interfaces (BCI) [1] which allow
users to communicate with outside world using their brain
waves. The BCI systems have several practical applications
of engineering importance such as rehabilitation/assistive sys-
tems [2]–[4], and controlling a wheelchair or neuro-prosthesis
for disabled individuals [5]. The BCI is a key member of
human-in-the-loop Cyber-physical systems (CPSs) [1], a new
class of systems promoting innovative research that further
augment human’s interaction with physical world. The per-
formance of such artificial interfaces, however, rarely matches
that of humans rendering their practical applications consider-
ably limited.

A BCI system typically consists of multiple modules clos-
ing the communication link including: (i) A brain imaging
modality to record brain activities, and; (ii) A signal pro-
cessing module to process the brain signals and produce
proper control outputs. Electroencephalogram (EEG) is the
most commonly used measurement modality for monitoring
brain activities. The EEG data is simultaneously collected

from a multitude of channels at a high temporal resolution,
yielding high dimensional matrices for representation of brain
activities. In addition to its unsurpassed temporal resolution,
EEG is wearable, and more affordable than other neuro-
imaging techniques, therefore, is a prime choice for any type
of practical BCI. Processing of EEG signals typically consists
of two main steps: feature generation and feature translation
(classification). While the latter tries to make sense of the
previously extracted features, the former aims at extracting
relevant information from raw signals and avoid the so-called
“curse of dimensionality”. Several motor-related EEG signal
modalities have been investigated in the literature among
which typically Sensorimotor Activities [6] is considered as
the leading developed modality. Frontal and parietal cortices
exhibit rhythmic activity in the 8-12 Hz and 13-30 Hz ranges,
respectively called µ and � rhythms. In case of a voluntary
movement these rhythms fade out, a phenomenon referred to
as event-related desynchronization (ERD). Once the movement
is over, these rhythms emerge again and produce an event-
related synchronization (ERS).

The Common Spatial Patterns (CSP) [7], [8] is an effective
tool for discriminating imagery movements based on EEG
signals which is commonly used to detect abnormalities in
EEG signals. The CSP algorithm introduces spatial filters for
multi-channel EEG recordings to better locate and extract ERD
and ERS waveforms. Consequently, the CSP methodology
enhances EEG channels containing higher weights for the
ERD and the ERS. Several recent works have shown that
performance of the CSP for discriminating motor imagery
(MI) tasks is superior in comparison to its counterparts.
Therefore, the CSP has been extended and improved from
different aspects to enhance its classification performance, e.g.,
filter bank common spatial patterns (FBCSP) [9], regularized
common Spatial patterns (RCSP) [10]–[12], and separable
common spatio-spectral patterns (SCSSP) [13]. Improved per-
formance of the such algorithms, however, comes at cost of
high computation which is the main motivation of this work.

In this paper, we propose to couple error-correction output
codding coupled with CSP, refers to as the ECO-CSP frame-
work which utilizes the ECOC classifiers during the last stage
to classify EEG signals into different MI classes. The ECOC is
one of the most widely used classification algorithms in other
application domains such as text-recognition, and primary
deals with multi-class problems by reducing the original task
into a series of binary sub-classification problems. To the
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best of our knowledge, the ECOC has not yet been applied
to EEG classification. The proposed ECO-CSP framework
addresses this gap. In brief, the ECO-CSP builds spatial filters
by means of the CSP and extracts appropriate features which
are then provided to a ECOC classifier to discriminate the
imagery tasks on unseen EEG recordings. The rest of the
paper is organized as follows: Section II formulates the EEG
classification problem. The proposed ECO-CSP is developed
in Section III. Simulation results are provided in Section IV.
Finally Section V concludes the paper.

II. PROBLEM FORMULATION

Throughout the paper, the following notations are used: non-
bold letter x denotes a scalar variable, lowercase bold letter x
represents a vector, and capital bold letter X denotes a matrix.
The real domain is represented by R. The transpose and trace
of a matrix X are, respectively, denoted by X

T , and Tr(X).
We consider supervised learning from EEG signals based

on the available set of EEG epochs (trials) denoted by Xi 2
RNch⇥Nt , for (1  i  NTrial), where NTrial is the total number
of trails used for processing; Nch is the number of EEG
channels (electrodes), and; Nt is the number of time samples
collected from each electrode in one trial. The training dataset
is denoted by {(Xi, Li)}, for (1  j  NTrial), where Li

represents the label corresponding to the ith trial, e.g., Li

could be “MI of right hand”, “MI of left foot”, or “MI of
left hand”. Before processing EEG signals for classifying MI
tasks, typically, a pre-processing step is applied. In this stage,
initially the power line interference is removed by applying
a notch filter. Then, bandpass filtering is applied to extract
0.5-100 Hz frequency contents. The pre-processing step is
commonly followed by constructing second-order statistics of
the EEG epochs, i.e., computing the sample covariance matrix
corresponding to each trial Xi as follows

Ci =
1

Nt � 1

�
Xi � µi

��
Xi � µi

�T
, (1)

where µi is the column-wise sum of Xi. Since Xi is obtained
from bandpass filtering of an EEG signal, all classes have
zero mean, i.e., µi = 0, for (1  i  NTrial). Therefore,
the discriminant information contained in the second-order
statistics of the data can be represented, instead, by the
normalized spatial covariance matrix given by

Ci =
XiX

T
i

Tr(XiX
T
i )

. (2)

The CSP features [7] are then extracted from the normalized
spatial covariance matrices and provided as input to the
classifier for performing the MI classification task. It is worth
mentioning that, principle component analysis (PCA) and
independent component analysis (ICA), which are commonly
used pre-processing techniques in other application domains,
typically fail to improve the classification performance in BCI
systems. The advantage of the CSP compared to the ICA and
the PCA may, to a large extend, be attributed to incorporation
of label information, i.e., while CSP exploits the information

contained in labels in a supervised manner, ICA and PCA are
unsupervised methods. This completes a brief presentation of
the problem at hand. Next, we present the proposed ECO-CSP
framework.

III. THE ECO-CSP FRAMEWORK

In this section, we present the proposed ECO-CSP frame-
work. As stated previously, Reference [14] proved the fact
that during MI tasks, the energy in the µ-band (8-13 Hz)
decreases and energy in the �-band (13-30 Hz) increases.
Motivated by this observation and to decrease the compu-
tational cost, in the proposed ECO-CSP, we consider only
the aforementioned two frequency bands (unlike the FBCSP
method which deploys nine bandpass filters). In addition,
since the number of preliminary features would decrease by
factor of 2/9 for each trial, feature selection method based on
mutual information is no longer required further reducing the
computation complexity of the proposed ECO-CSP. Finally,
the ECO-CSP utilizes a new classification methodology, the
ECOC, which differentiates it from the existing CSP-based
approaches. In the following two sub-sections we elaborate
on different aspects of the ECO-CSP framework.

A. ECOC-based EEG Modeling

The ECO-CSP is developed for multi-class (more than two)
EEG classification problems where the conventional binary
classifiers such as support vector machines (SVM) or linear
discriminant analysis (LDA) are not applicable. To address
this issue, one can extend the above mentioned classical
binary classifiers to multi-class settings, or adapt current binary
classifiers to become applicable to multi-class scenarios, e.g.,
famous techniques in this category are “one vs. one” and “one
vs. all”. On the other hand, the ECOC is among few techniques
which is developed intrinsically for multi-class classification.
Reference [15] compared the performance of decision trees
with that of the ECOC over a number of datasets and proposed
ECOC as the general solution for multi-class classification.
A later work [16] solidified the background of ECOC and
proposed routines to better deploy this method for multi-class
classification problems. Reference [17] successfully applied a
combination of ECOC and Bayesian techniques for text clas-
sification problem. Since then, ECOC has been successfully
and extensively applied [18] in different application domains
other than for EEG classification in BCI systems. The paper
addresses this gap.

The ECO-CSP uses a binary coding matrix consisting of Nc
bit-vectors of length NBits. The set of all bit-vectors (the coding
matrix) is denoted by C, where the ith row Ci is a unique bit-
vectors (referred to as a codeword) corresponding to class i,
for (1  i  Nc). In other words, for an EEG classification
problem with Nc MI classes, codewords are of length NBits,
denoted by ⇤ = {�(1)

,�

(2)
, . . . ,�

(NBits)}, where total of NBits
classifiers (�(j), for (1  j  NBits)) are constructed to decide
on whether their corresponding bit is zero or one. Based on the
EEG classification problem, we consider a multi-class setting
consisting of (3  Nc  7) different classes, and construct
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Right Hand IM

Left Hand IM 

Foot IM 

Tongue IM

Classes Codeword

1 1 1 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

Class 2

Classifier 4

Fig. 1. The ECOC example with 7 bits for classifying 4 EEG classes.

codes of length NBits = 2

Nc�1 � 1 computed based on the
following procedure: (i) All the entries in the first row are
ones; (ii) The second row consists of 2Nc�2 zeros followed by
2

Nc�2 � 1 ones; (iii) The third row consists of 2

Nc�3 zeros,
followed by 2

Nc�3 ones, followed by 2

Nc�3 zeros, followed
by 2

Nc�3�1 ones, and; (iv) The ith row consists of alternating
runs of 2Nc�i zeros and ones.

The ECO-CSP constructs an individual binary classifier for
each column of the coding matrix C. Classifier j, for (1  j 
NBits), has positive instances for each class i when C(i,j) = 1.
In other words, each classifier predicts whether or not a given
trial belongs to a fixed subset of classes, resulting into two
super-sets S

(0) and S

(1). Training the ECO-CSP classifier
comprises of learning a set ⇤ = {�(1)

, . . . ,�

(NBits)} of inde-
pendent binary classifiers. Based on this learned ⇤, the correct
class of an unlabeled trial Xi is hypothesized as follows:
Evaluate each independent classifier based on Xi resulting in
generation of ⇤(Xi) = {�(1)

(Xi), . . . ,�
(NBits)

(Xi)}. Most
likely, the generated bit-vector ⇤(Xi) will not be a row of
C, but it will certainly be closer (in Hamming distance �) to
some rows than to others. Trial Xi is categorized as follows

�(Xi) = argmini�
�
Ci,⇤(Xi)

�
, (3)

where �(a, b) is the number of bits in which vectors a and
b differ. In other words, when classifying a new signal Xi,
we compute the Hamming distance between ⇤(Xi) and all
available codewords Ci. We assign the new signal to class i

if it has the minimum distance among other classes.

Illustrative Example: Fig. 1 shows an illustrative example for
the task of classifying new EEG trials into Nc = 4 categories,
i.e., {Right hand IM, Left hand IM, Feet IM, Tongue IM}.
Seven classifiers are trained in terms of our running example,
i.e., NBits = 7. For instance, in Fig. 1, the 4th classifier is
responsible to distinguish trials whose label is “Right hand
MI”, “Tongue IM”, or “Feet MI” with those whose label is
“Left hand MI”. In other words, the two super-sets for the 4th
classifier are as follows: S(1)

= {Right hand MI, Tongue IM,
Feet MI} and S

(0)
= {Left hand MI}. Algorithm 1 outlines

different steps of ECOC-based modeling of an EEG trial.

B. CSP-based Feature Extraction/Classification

Features required for classificatin/traning of NBits binary
classifiers are obtained by extracting CSP from EEG epochs.

Algorithm 1 ECOC-BASED EEG MODELING

Input: EEG Trials: {Xi}NTrial
i=1 ; Labels: {hi}NTrial

i=1 with Nc
distinct MI classes, and; Number of classifiers: NBits.

Output: The coding matrix: C, and; NBits trained binary
classifiers {�(1)

, . . . ,�

(NBits)}.
S1. Codebook Generation: Generate the (Nc ⇥ NBits) binary

coding matrix C.
S2. Classifier Design:

1: for 1  j  N

Bits

do
2: Construct two super-sets, S

(j,0)
and

S

(j,1)
where S

(j,1)
consists of all labels

hi for which Cij = 1, and S

(j,0)
is the

complement set.

3: Construct a binary classifier b

(j)
to

distinguish S

(j,0)
from S

(j,1)
.

4: end for

It is worth mentioning that each classifier �

(j), for (1  j 
NBits), uses its specific features, i.e., features are classifier
specific. Intuitively speaking, the CSP methodology uses a
linear transformation matrix to project multi-channel EEG
signals into a lower-dimensional spatial subspace for the NBits
classifiers representing the code book C. The projection matrix
is used to maximize the variance of two-class signals by simul-
taneous diagonalization of the normalized spatial covariance
matrix of EEG signals corresponding to the two class.

More specifically, for trial Xi, classifier �(j), for (1  j 
NBits), first derives the normalized spatial covariance matrix
denoted by C

(j)
i based on Eq. (2). As the goal of the CSP is

to discriminate two classes of data, we define ¯

C

(j,0) and ¯

C

(j,1)

as the average of spatial covariance matrices of different trials
belonging to each super-set (S(j,0) and S

(j,1)). For example,
in terms of our running example, ¯

C

(4,0) is the average of
covariance matrices belonging to S

(0)
= {Lefthand MI} while

¯

C

(4,1) is the average of covariance matrices belonging to
S

(1)
= {Right hand IM, Feet IM, Tongue IM}. Based on

the computed average covariance matrices ( ¯C(j,0) and ¯

C

(j,1)),
the composite spatial covariance matrix denoted by C

(j,c) is
computed as follows

C

(j,c)
=

¯

C

(j,0)
+

¯

C

(j,1)
. (4)

The next step is to perform eigenvalue decomposition on the
composite covariance matrix as

C

(j,c)
= U

(j,c)
�

(j,c)
[U

(j,c)
]

T
, (5)

where U

(j,c) is the matrix of eigenvectors associated with the
composite covariance, and �

(j,c) is the diagonal matrix of its
corresponding eigenvalues. The next step in ECO-CSP is to
apply a whitening transform denoted by P

(j) on U

(j,c) as

P

(j)
=

q⇥
�

(j,c)
⇤�1

[U

(j,c)
]

T
. (6)

Intuitively speaking, the whitening operator equalizes the vari-
ance in the space spanned by U

(j,c), i.e., all the eigenvalues
of P

(j)
C

(j,c)
[P

(j)
]

T are equal to one. Using the whitening
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matrix defined in Eq. (6), the average covariance matrices
( ¯C(j,0) and ¯

C

(j,1)) are transformed as follows

S

(j,0)
= P

(j)
¯

C

(j,0)
[P

(j)
]

T (7)
and S

(j,1)
= P

(j)
¯

C

(j,1)
[P

(j)
]

T
, (8)

therefore, S

(j,0) and S

(j,1) share common eigenvectors de-
noted by B

(j), i.e.,

S

(j,0)
= B

(j)
�

(j,0)
[B

(j)
]

T (9)
and S

(j,1)
= B

(j)
�

(j,1)
[B

(j)
]

T
, (10)

with �

(j,0)
+ �

(j,1)
= I , where I denotes an identity matrix

of appropriate dimension. Since the sum of two corresponding
eigenvalues is always one, the eigenvector with largest eigen-
value corresponding to ¯

S

(j,0) has the smallest eigenvalue for
¯

S

(j,1) and vice versa. This property makes the eigenvectors
B

(j) useful for classification of the two distributions. The
projection of whitened EEG signals onto the first and last
eigenvectors in B

(j) (i.e., the eigenvectors corresponding to
the largest and smallest eigenvalues) will provide feature
vectors that are optimal for discriminating two populations
of EEG signals in the least square sense. Therefore, the
ECO-CSP projection matrix corresponding to classifier �

(j),
for (1  j  NBits), is

W

(j)
=

⇥
P

(j)
⇤T

B

(j)
, (11)

which is then used to form the decomposition (mapping) of
each trial Xi, for (1  i  Nt) as follows

Z

(j)
i =

⇥
W

(j)
⇤T

Xi. (12)

Term Z

(j)
i is computed for each direction of imagined move-

ment (each MI class). As the variances of only a small number
m of signals are suitable for discrimination analysis, only the
first and last m rows of Z(j)

i are used for the construction of
the classifier. In other words, matrix Z

(j)
i,p is constructed from

the first and last m rows of matrix Z

(j)
i which represents rows

of Z(j)
i associated with the largest eigenvalues that maximizes

the difference of variance between two super-sets

f

(j)
i,p = log

 
var
�
Z

(j)
i,p

�

2mP
k=1

var
�
Z

(j)
k,p

�

!
, (13)

where var(·) denotes the variance operator. Note that, the log-
transformation in Eq. (13) is included to approximate normal
distribution of the data. This completes development of the
proposed ECO-CSP which is summarized in Algorithm 2.

IV. SIMULATIONS

In this section, performance of the proposed ECO-CSP
framework is evaluated based on BCI Competition IV-2a
dataset [19] which consists of four classes of motor imagery
EEG measurements (Right hand IM, Left hand IM, Feet IM,
and Tongue IM) obtained from nine subjects. Signals are
recorded at sampling rate of 250Hz using 22 EEG channels
and 3 monopolar electrooculogram (EOG) channels (with left

Algorithm 2 ECO-CSP TESTING

Input: Unlabled EEG Trial XTest; The coding matrix: C,
and; NBits trained binary classifiers {�(1)

, . . . ,�

(NBits)}.
Output: The output class �(XTest) of XTest.

S1. Filter XTest using two bandpass filters to extract µ (8-13
Hz) and � (13-30 Hz) frequency contents.

S2. Extract classifier-specific features (transforming matrices)
using Eqs. (12) and (13).

S3. Compute the NBits-bit codeword (⇤(XTest)).
S4. Compute the class of the test epoch using Eq. (3).

mastoid serving as the reference). The original EEG signal
recordings are already bandpass filtered (0.5-100Hz) and notch
filtered. For each subject, two sessions are recorded (one for
training purposes and the other one for evaluation). Each ses-
sion is performed six times with each run consisting of 48 trials
of length 3 seconds. In total and for each subject, 288 trials for
training and 288 trials for evaluation are available. In order to
measure performance of the proposed ECO-CSP framework
and based on the recommendation from BCI competition,
kappa coefficient  is used, i.e.,  =

CCR�Prand
1�Prand

, where CCR
represents the correct classification rate, and the value of Prand

for this dataset is equal to 0.25.
During the training stage, at first a segment of 6 seconds is

selected from each trial. The segment starts 2 seconds before
a cue is presented to the subject and lasts till 4 seconds after
that. Then, two bandpass filters (in this experiments we used
Chebychev type 2 filters of order 54) are applied to each
segment to extract the frequency contents of µ-band (8-13 Hz)
and the �-band (13-30 Hz). Finally, a segment of 2 seconds
is selected starting from 0.5 second after presenting the cue.
It is worth mentioning that the first step is applied to avoid
windowing effects that might influence the start and end of
the signal segment. The pre-processed segments of 2 seconds
(each segment starts 0.5 second after the cue is presented)
are then imported to ECO-CSP algorithm (as developed in
Section III-B) to train NBits = 7 binary classifiers. Note that,
incorporation of codewords with seven bits provides maximum
Hamming distance of 2 bits. In this experiment, commonly
used SVM and LDA classifiers are trained. During the testing
phase, unseen signals are used consisting of segments of 3
seconds (each segment starts from the presentation of the
unknown cue). After pre-processing, segments of length 2
seconds are utilized for spatial filtering and prediction.

Within the training stage, the performance of the trained
classifiers is examined via the technique of K-fold cross
validation. In this work we deployed 10-fold cross validation
to maintain consistency with the works in [9], [13]. Table I
represents the 10-fold cross validation of the training stage
of the classifiers. which is used to observe the over-fitting
or under-fitting of the training stage. The values that are
provided in this table, are rather comparable with the ones
that are provided in the FBCSP work [9]. Table II provides
the performance of our proposed algorithm in Kappa Value

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2128



Subjects
Classifiers for each bit in class codewords

Classifier1 Classifier2 Classifier3 Classifier4 Classifier5 Classifier6 Classifier7
LDA SVM LDA SVM LDA SVM LDA SVM LDA SVM LDA SVM LDA SVM

Subject 1 78.95 83.16 75.2 74.27 52.75 52.75 79.88 82.69 90.18 91.11 78.95 81.75 83.63 88.77
Subject 2 78.82 77.38 72.56 74.01 62.94 60.05 78.34 78.34 67.75 68.71 82.67 84.12 77.38 78.34
Subject 3 88.32 88.32 70.32 74.21 77.13 75.67 83.45 87.35 76.64 78.1 81.02 80.05 82.97 80.54
Subject 4 71.7 67.39 53 53.08 51.08 51.08 72.18 76.5 73.62 75.06 75.54 76.98 77.94 82.25
Subject 5 74.74 75.2 63.51 62.11 66.78 67.72 73.8 75.2 71.46 73.33 77.08 79.88 78.01 78.01
Subject 6 76014 79.42 67.72 66.78 68.19 66.78 78.48 80.82 65.38 65.38 80.35 80.82 76.61 77.54
Subject 7 85.45 85.94 69.94 68.48 74.79 74.79 78.18 83.52 97.09 98.55 87.39 86.42 84 84.97
Subject 8 83.27 83.78 82.26 82.76 83.27 81.75 89.86 92.4 80.23 77.19 73.17 75.16 87.83 88.34
Subject 9 88.85 89.33 75.76 77.21 68.48 68 80.12 80.12 72.85 73.82 75.27 81.09 77.21 78.18

TABLE I
10-FOLD CROSS VALIDATION RESULTS FOR TRAINING OF 7 CLASSIFIERS FOR 9 SUBJECTS OF BCI COMPETITION IV2A DATASET. THE RESULTS ARE

MEASURED IN KAPPA VALUE

Subjects Different Classifiers
LDA SVM

Subject 1 48.61 48.14
Subject 2 20.83 20.37
Subject 3 50.46 49.07
Subject 4 34.25 31.49
Subject 5 18.05 16.2
Subject 6 8.33 12.5
Subject 7 57.87 63.88
Subject 8 44.44 38.42
Subject 9 37.05 37.96
Average 35.54 35.34

TABLE II
PERFORMANCE (IN KAPPA VALUE ()) OF 2 DIFFERENT CLASSIFIERS FOR

9 SUBJECTS OF BCI COMPETITION IV2a DATASET.

measure over unseen data. The results are superior in compar-
ison to the ones obtained from the application of conventional
CSP algorithm. In contrast, our algorithm is using bare CSP
analysis with a novel classification method. The proposed
method is achieving rather similar results to the recent works
that deploy complicated and intensive algorithms.

V. CONCLUSION

Modeling and realizing different signal patterns plays an
important role in EEG-based BCI systems. Processing of an
EEG signal typically consists of the following major steps:
pre-processing, feature extraction, feature selection, and clas-
sification. For feature extraction, it has been proved that CSP
analysis yields the most compromising results. One of the
techniques which is well regarded in other research fields but
has not yet been applied to EEG-based BCI, is the ECOC
classifier. The paper proposes to couple ECOC with the CSP
(referred to as the ECO-CSP framework) where the ECOC
classification technique is applied to EEG motor imagery
classification problem. The BCI Competition IV-2a dataset is
used to evaluate the performance of the proposed framework.
Our experiments indicate that the proposed ECO-CSP frame-
work provides similar results when compared to other recently
developed algorithms, but has extensively less computational
complexity making it a practical alternative for real-time EEG
motor imagery classification tasks.
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