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Abstract—In this paper, we propose a method for respiratory
rate estimation based on the received signal strength of nar-
rowband radio frequency transceivers. We employ a state-space
formulation of periodic Gaussian processes to model the observed
variations in the signal strength. This is then used in a Rao–
Blackwellized unscented Kalman filter which exploits the linear
substructure of the proposed model and thereby greatly improves
computational efficiency. The proposed method is evaluated on
measurement data from commercially available off the shelf
transceivers. It is found that the proposed method accurately
estimates the respiratory rate and provides a systematic way of
fusing the measurements of asynchronous frequency channels.

I. INTRODUCTION

In the past years, interest toward ubiquitous health monitor-
ing has increased and it has been envisioned that the advances
in health monitoring technologies enable future smart homes
that would continuously monitor the vital signs of the residents.
This information could be used for: i) increasing our health-
awareness; ii) diagnostic purposes by medical professionals;
and iii) detecting aberrations that need immediate clinical
attention. The respiration rate is one essential indicator of
a person’s health and hence, monitoring it is important [1], [2].

Traditional approaches for measuring the respiratory rate
require body contact in which an instrument is attached
to the subject’s body to measure for example respiratory
airflow, chest/abdominal movement, CO2 concentration, or
blood oxygen saturation [2]. Such sensors are unsuitable in
home healthcare applications since the person’s mobility is
restricted, an elderly suffering from dementia may forget to
wear a sensor, and infants may remove them. An alternative is
to use non-invasive methods that do not rely on body contact
and popular approaches include vision-based techniques [3]
and radio frequency (RF)-based methods [4]–[6], a research
topic we explore in this work.

The propagation delay of the RF signal that reflects from
the breathing person’s moving chest cavity is quasi-periodic
in time [4]. Measuring the propagation delay is possible
for example with ultra-wideband radios [4] and frequency
modulated carrier wave radars [6]. These works show that
respiration rate can be estimated with high accuracy and the
technologies can also be used to estimate the heart rate. As a
drawback, these systems rely on customized technology and
require a large bandwidth.

Narrowband receivers on the other hand can not resolve
individual multipath components. However, such devices are
cheap and received signal strength (RSS) measurements are
ubiquitously available in nearly all radios. In [5], it is shown that
sinusoidal changes in the propagation delay also cause periodic
variations in the RSS and breathing rate estimation is possible
if many transceivers [5] or frequency channels [7] are used.
These systems measure the RSS between different wireless
links, then the power spectral density (PSD) is calculated over
a 15 s–60 s time window for each link, the PSDs are averaged
over all links, and the maximum of the mean PSD is used
as the breathing rate estimate. This approach is brute force
and does not take into account that the RSS measurements for
each link are sampled asynchronously and that breathing is not
perfectly sinusoidal but also contains higher order harmonics.

In this paper, we develop a recursive, non-parametric
approach to respiratory rate tracking. Specifically, we model the
oscillatory nature of breathing using a state-space formulation
of periodic Gaussian processes and subsequently apply a Rao–
Blackwellized unscented Kalman filter for estimation. The
method can easily handle asynchronous and missing (e.g. due
to packet loss) measurements from multiple sources such as
multiple radio channels and does not rely on spectral analysis.
The proposed method is similar to the ones proposed in [8],
[9] in the context of electrocardiography and oximetry-based
respiratory rate monitoring, which use batch-based Gaussian
processes. However, the method proposed herein distinguishes
itself by using a state-space formulation and Kalman filtering
which has the beneficial properties mentioned earlier.

II. MODEL

The chest’s motion due to breathing causes changes in the
properties of the radio path, which reflects as a change in
the RSS. Due to the quasi-periodic nature of this motion, the
changes in RSS are quasi-periodic too. These changes can be
modeled using, for example, Fourier series or (quasi-)periodic
Gaussian processes (GP). In this work, the latter approach is
chosen due to its flexibility and robustness [10], [11].

The measured RSS for channel i (i = 1, . . . , C) at time tn
can thus be written as

yi,n = gi(tn) + ri,n (1)
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where ri,n denotes the measurement noise that is modeled as
independent, identically distributed white Gaussian noise as
ri,n ∼ N (0, Ri) [12]. Furthermore, gi(t) is a GP according to

gi(t) ∼ GP(0, k(τ)) (2)

where GP(µ(x), k(x, x′)) denotes a Gaussian process with
mean function µ(x) and covariance kernel k(x, x′), and τ =
t− t′. For periodic GPs, a suitable covariance function is the
canonical periodic covariance function [11], [13] given by

k(τ) = σ2 exp

(
−

2 sin2
(
ωτ
2

)
l2

)
(3)

where σ2 is the variance magnitude, ω the frequency of the
periodicity, and l the GPs length scale.

It has been shown that such periodic GPs can be written in
the form of an infinite-dimensional state-space system as [11]

γ̇j(t) = Ajγj(t) +Bjηγj (t) (4a)

gi(t) = γ0(t) +
∞∑
j=1

Hjγj(t) (4b)

where γj(t) are 2× 1 vectors, γ0(t) is a scalar, Hj =
[
1 0

]
,

and ηγj (t) is a white noise process with spectral density Sγj .
In practice, the infinite sum over j is not realizable and the
series has to be truncated at some upper bound J .

The matrices Aj , Bj , and Sγj are determined by the
covariance kernel k(τ). For the kernel in (3) and j > 0, these
are

Aj =

[
0 −jω
jω 0

]
, Bj = I2, (5a)

Sγj = 2κ2
jI2, κ2

j = 2σ2 exp(−l−2)Ij(l−2) (5b)

where Ij(x) is the jth order modified Bessel function of the
first kind. Discretization of (4)-(5) yields the discrete-time
model

γj,n = Fjγj,n−1 + qγj ,n (6)

with qγj ,n ∼ N (0, Qγj ),

Fj =

[
cos(jω∆t) − sin(jω∆t)
sin(jω∆t) cos(jω∆t)

]
, (7a)

Qγj = Sγj∆t, (7b)

and ∆t = tn − tn−1 for j > 0.
For the DC component γ0(t), we have that

γ̇0(t) = η0(t), (8a)

κ2
0 = σ2 exp(−l−2)Ij(l−2), (8b)

and the discretized version is

γ0,n = γ0,n−1 + qγ0,n (9)

with qγ0,n ∼ N (0, Qγ0), and Qγ0 as in (7).
The frequency ω = 2πf of the GP is normally constant

and known (or optimized as one of the GP’s hyperparameters).
However, here it corresponds to the breathing rate which is
the time-varying quantity of interest. Thus, we introduce an

additional state for the breathing frequency f(t). Since f(t) ≥
0, we model this as geometric Brownian motion with zero drift.
Let ν(t) = log(f(t)), then, the stochastic differential equation
for ν(t) is given by [14]

ν̇(t) = −1

2
S2
f + ηf (t) (10)

where ηf (t) is a white noise process with spectral density Sf .
Discretization of (10) yields

νn = νn−1 −
1

2
S2
f∆t+ qf,n (11)

and qf,n ∼ N (0, Qf ) with Qf = Sf∆t. Note that by
introducing a time-varying frequency, the covariance function
becomes time-dependent and thus, the GP is non-stationary.

Collecting all the coefficients for the ith channel as

γi,n =
[
γ0,n γT1,n . . . γTJ,n

]T
,

qi,n =
[
qγ0,n qTγ1,n . . . qTγJ ,n

]T
,

F i = blkdiag(1, F1, . . . , FJ),

Qi = blkdiag(Qγ0 , Qγ1 , . . . , QγJ )

the complete discrete-time model for all C channels is
νn
γ1,n

...
γC,n

 = f(νn−1) + F(νn−1)

γ1,n−1
...

γC,n−1

+


qf,n
q1,n

...
qC,n

 (12a)

yi,n = Gixn + ri,n (12b)

with

f(νn−1) =

[
νn−1 −

S2
f∆t

2
0C(2J+1)×1

]
, F(νn−1) =

[
01×C(2J+1)

IC ⊗ F i

]
,

Gi =
[
01×(i−1)(2J+1)+1 1 11×J ⊗

[
1 0

]
01×(C−i)(2J+1)

]
where ⊗ denotes the Kronecker product and the dependency
of F i on ωn−1 = 2π exp(νn−1) is implicit. Furthermore, we
can define the covariance matrix of the complete process noise
vector as Q = blkdiag(Qf ,Q1, . . . ,QC).

Note that while the logarithm of the breathing rate νn is a
shared state for all channels there is one individual GP for each
channel, accounting for the different magnitudes and phases.
Also, the measurements yi,n may be completely asynchronous,
depending on the communication protocol.

III. ESTIMATION

A. State Estimation

The state-space model (12) can readily be used together
with any standard state estimation algorithm such as Kalman
or particle filters (and smoothers). However, the model is linear
in all states but νn for the dynamics and completely linear in
the measurements. Thus, in order to not waste computational
resources, a Rao–Blackwellized variant should be used to
efficiently exploit the linear substructure. We use a Rao–
Blackwellized unscented Kalman filter here (see [15], [16]).
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The idea is to partition the state vector xn into states that
enter the model non-linearly (xnn) and linearly (xln) such that

xn =

[
xnn
xln

]
and Pn|n =

[
Pnn|n Pnln|n

(Pnln|n)T P ln|n

]

with xnn = νn and xln =
[
γT

1,n γT
2,n . . . γT

C,n

]T
. This

structure can now be exploited to obtain a reduced-complexity
filtering algorithm summarized in Algorithm 1 (see, e.g., [15],
[16] for details). Here, the M = 2N + 1 sigma-points (N = 1
is the dimension of the non-linear subspace) and their weights
as obtained from the unscented transform are given by [17]

xn,mn =


x̂nn|n m = 1

x̂nn|n + [δx]m−1 m = 2, . . . , N + 1

x̂nn|n − [δx]m−1 m = N + 2, . . . ,M

(13a)

w1
M =

λ

N + λ
, (13b)

w1
C =

λ

N + λ
+ (1− α2 + β), (13c)

wmM = wmC =
λ

2(N + λ)
, m = 2, . . . ,M (13d)

where [·]m denotes the mth column of the matrix argument,
δx =

√
(N + λ)Pnn|n, wmM and wmC are the weights of the

mean and covariance, respectively, λ = α2(N + κ)−N , and
α, β, and κ are the parameters of the unscented transform.

It is important to point out that the Kalman filter together with
the model (12) easily accommodate asynchronous measurement
updates. This is especially useful for the problem considered
here as the RSS measurements arrive asynchronously due to
the channel hopping nature of the communication protocol.

Also note that by using Rao–Blackwellization, the number
of sigma-points is reduced to 3 as compared to using an
unscented Kalman filter without Rao–Blackwellization which
would require 2[C(2J + 1) + 1] + 1 sigma-points.

B. Preprocessing

Because of the limited dynamic range of low-cost, off-the-
shelf radio transceivers and the small amplitude of the RSS
variations, significant quantization is sometimes observed. In
particular, the RSS is often only reported in terms of integer
values and the signal has to be preprocessed before the Kalman
filter introduced above can be employed. A pragmatic solution
to this is to recover the underlying signal (12b) by applying a
low-pass filter to the quantized signal. For this purpose, a 5th
order elliptical FIR low-pass filter with cutoff and stop-band
frequencies fp = 1 Hz and fs = 1.2 Hz, respectively, passband
ripple Rp = 0.05 dB and stop-band attenuation Rs = 40 dB
has been used in this work. Strictly speaking, this does not
exactly recover (12b) (e.g. the measurement noise will be
correlated), but we found this to generally work well.

C. Initialization

A well initialized filter is key to achieve good performance.
The crucial states here are the frequency fn (or rather its

Algorithm 1 Rao–Blackwellized Unscented Kalman Filter
Iteration

1) Prediction
a) Calculate the sigma-points {xn,mn−1}Mm=1 according

to (13)
b) Calculate the orthogonalization [15]

Ln−1 = (Pnln−1|n−1)T(Pnn−1|n−1)−1

x̃l,mn−1 = x̂ln−1|n−1 + Ln−1(xn,mn−1 − x̂nn−1|n−1)

P̃ ln−1 = P ln−1|n−1 − Ln−1Pn−1|n−1L
T
n−1

c) Propagate the state

xmn = f(xn,mn−1) + F(xn,mn−1)x̃l,mn−1

d) Predict the state and covariance

x̂n|n−1 =
M∑
m=1

wmMx
m
n

Pn|n−1 =
K∑
k=1

wmC
[
(xmn − x̂n|n−1)(xmn − x̂n|n−1)T

+F(xn,mn−1)P̃ ln−1(F(xn,mn−1))T + Q
]

2) Measurement update

Sn = GiPn|n−1G
T
i +Ri,n

Kn = Pn|n−1G
T
i S
−1
n

x̂n|n = x̂n|n−1 +Kn(yi,n − Gix̂n|n−1)

Pn|n = Pn|n−1 −KnSnK
T
n

logarithm νn) and the DC components γ0,n. If the frequency
is initialized poorly, there is a big risk that the filter will
not converge to the correct frequency — which is a common
challenge in recursive frequency estimation. Fortunately, the
range of the breathing rate for healthy humans is relatively
narrow, approximately between 12 bpm and 18 bpm (0.2 Hz–
0.3 Hz) [18]. Thus, the initial breathing rate is set to the
mean of these two, that is, ν̂0|0 = log(15/60) with covari-
ance such that one-sigma covers the whole range, that is,
Cov{ν0} = 1

4 (log(18/60)−log(12/60))2. However, a suitable
initial breathing rate could also be determined from a small
batch of initialization data.

Proper initialization of the DC component γ0,n helps to
speed up convergence. Since the amplitudes of the oscillations
are generally relatively small compared to the mean RSS, a
suitable initialization is simply the first RSS measurement yi,1.

The remaining states (the coefficients of the higher orders)
are not critical. Good initialization will help to speed up
convergence, but initializing them to zero will not affect the
performance significantly. Thus, these are set to zero.

IV. RESULTS

A. Experiment Setup

The breathing rate of a person is monitored using two IEEE
802.15.4 compliant narrowband transceivers that are deployed
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Fig. 1. Example of the measured RSS signal for channel i = 1 (top), the
estimated breathing rates for the proposed method ( ) and the spectrum
estimation-based approach ( ) (middle) and both methods’ absolute error
(bottom) for 14 bpm.

on opposite sides of a bed, two meters apart from each other.
In the experiments, the person is lying still in between the
transceivers and breathing at a predefined rate. The transceivers
communicate on C = 16 frequency channels covering a band
between 2.405 GHz and 2.480 GHz and the sampling rate for
each channel is on average 32 ms. The transceivers are equipped
with low-resolution A/D converters and the RSS is measured
with ±1 dB resolution. The experimental procedure follows
that of experiment no. 1 in [7] and the reader is referred to
that work for more details about the experimental setup.

In Section IV-B, the model parameters are set to Sf =
σ2 = (1× 10−3)2, l = 0.1, J = 4, and Ri = 0.252. The
filter parameters are α = 1, β = 0, and κ = 1. Furthermore,
the prefilter discussed in the previous section is applied to
each channel. The proposed method is benchmarked against a
Kalman filter-based spectrum estimation method [19] which is
applied for each radio channel individually and yields similar
performance as the commonly used batch-based PSD estimation
methods. If multiple channels are used, the estimated spectra
are averaged before the person’s breathing rate is estimated
as done in [7]. The breathing rate is estimated by taking the
frequency of the highest peak in the range of 0.1 Hz to 1 Hz,
excluding the strong DC term. The frequency grid spacing was
chosen to be ∆f = 0.01 Hz.

B. Results and Discussion

Fig. 1 and Fig. 2 show two examples of the RSS signal
together with the estimated breathing rate as well as the absolute
value of the estimation error ei,n = f̂n − fn of the proposed
method and the spectrum estimation-based method when using
a single channel (channels 1 and 3, respectively). For channel
1, the RSS shows clear oscillations and both methods converge
in approximately the same time to the true rate of 14 bpm.
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Fig. 2. Example of the measured RSS signal for channel i = 3 (top), the
estimated breathing rates for the proposed method ( ) and the spectrum
estimation-based approach ( ) (middle) and both methods’ absolute error
(bottom) for 14 bpm.

However, the spectrum-based method shows a jumpy behavior
during convergence which is due to how the rate is estimated in
this approach (selecting the peak frequency). For the proposed
method, the estimate converges more smoothly.

For channel 3 (Fig. 2), the measured RSS exhibits much less
clear oscillations of the base frequency. This causes problems
in the spectrum-based method since the higher harmonics are
stronger in this case. Using this approach, it is not straight-
forward to resolve this and the method does not converge.
The GP-based method on the other hand copes with this since
there is no requirement for the base frequency to exhibit the
highest magnitude. Thus, the estimate converges as quickly as
for channel 1.

Fig. 3 shows the estimated breathing rate and the absolute
estimation error for the case when all channels are used
simultaneously where the GP-based method simply performs
asynchronous updates while the spectra for the different
channels are averaged as described above. Again, both methods
converge almost equally quickly. An important difference
between the methods is that the spectrum-based approach
actually exhibits a small and constant steady-state error. This is
because of this method being bound to the discrete frequency
bins which in this case are separated by 0.01 Hz. However,
14 bpm correspond to 0.233 Hz and thus, the closest bin is at
0.23 Hz. The GP method does not suffer from this limitation.

Finally, Fig. 4 illustrates the time-averaged root mean squared
error (RMSE) eRMSE =

√
1
T

∑
n e

2
i,n for different breathing

rates using all channels (similar figures could be shown for
each of the 16 individual channels but that would not provide
additional insight). During the transient period (0 s–30 s), the
proposed method attains a significantly lower RMSE compared
to the reference method. The main reason for this is the
large error due to the jumpy behavior as observed in Fig. 3,
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Fig. 3. Example of the estimated breathing rate (top) and the absolute errors
(bottom) using all C = 16 channels for the proposed method ( ) and the
spectrum estimation-based approach ( ) for 14 bpm.
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Fig. 4. Time-averaged RMSE for the different breathing rate during
convergence (0 s – 30 s; top) and after convergence (> 30 s; bottom) for
the proposed method ( ) and the spectrum estimation method ( ).

which inflates the RMSE. It is also worth pointing out that
the GP approach has higher RMSEs for 12 bpm, 18 bpm, and
20 bpm compared to 14 bpm and 16 bpm. This is due to the
initialization of the breathing rate (15 bpm) which affects the
convergence time and results in the higher RMSE for these
cases. After convergence, the RMSE is much lower and of the
same magnitude for both methods. The main factor contributing
to the higher RMSE is how close the closest frequency bin is for
the spectrum-based method, which determines the steady-state
error. Note that for 12 bpm (0.2 Hz), the closest frequency bin
coincides with the true breathing rate exactly and zero RMSE
is achieved for the spectrum method.

V. CONCLUSIONS

In this paper, we presented a novel method for respiratory
rate monitoring based on periodic Gaussian processes and
Kalman filtering motivated by the variations in RSS measure-
ments of narrowband radio transceivers. It has been shown
that the method is capable of estimating the breathing rate
recursively and optimally fusing the different channels, without
requiring windowing or batch-processing. Furthermore, missing
measurements do not pose a problem for the proposed method

since there is no requirement of equispaced sampling. Despite
the fact that the method has been introduced in the light
of RSS measurements, it can readily be generalized to any
type of measurements where the respiratory rate manifests
in quasi-periodic signals (e.g. ultra-wideband transceivers or
chest-mounted accelerometers).
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[12] H. Yiğitler, R. Jäntti, and N. Patwari, “On log-normality of RSSI in
narrowband receivers under static conditions,” IEEE Signal Processing
Letters, vol. 24, no. 4, pp. 367–371, April 2017.

[13] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[14] B. Øksendal, Stochastic Differential Equaitons: An Introduction with
Applications, 6th ed. Springer, 2010.

[15] M. R. Morelande and B. Moran, “An unscented transformation for
conditionally linear models,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, April 2007, pp. 1417–1420.

[16] J.-O. Nilsson, “Marginalized Bayesian filtering with Gaussian priors and
posteriors,” ArXiv e-prints, July 2016, arXiv:1603.06462v2.

[17] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter
for nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium, 2000, pp. 153–158.

[18] K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, Ganong’s
Review of Medical Physiology, 25th ed. McGraw-Hill, 2015.

[19] Y. Qi, T. P. Minka, and R. W. Picard, “Bayesian spectrum estimation of
unevenly sampled nonstationary data,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing, May 2002, pp. 1473–1476.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 270


