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Abstract—The image restoration problem deals with images in
which information has been degraded by blur or noise. In this
work, we present a new method for image deblurring by solving
a regularized linear least-squares problem. In the proposed
method, a synthetic perturbation matrix with a bounded norm
is forced into the discrete ill-conditioned model matrix. This
perturbation is added to enhance the singular-value structure of
the matrix and hence to provide an improved solution. A method
is proposed to find a near-optimal value of the regularization pa-
rameter for the proposed approach. To reduce the computational
complexity, we present a technique based on the bootstrapping
method to estimate the regularization parameter for both low
and high-resolution images. Experimental results on the image
deblurring problem are presented. Comparisons are made with
three benchmark methods and the results demonstrate that the
proposed method clearly outperforms the other methods in terms
of both the output PSNR and SSIM values.

Index Terms—Bootstrapping, bounded perturbation regulariza-
tion, image deblurring, linear least-squares problems, Tikhonov
regularization.

I. INTRODUCTION

Image restoration from blurry and noisy observations has
received great interest over the years. Often, the problem is
reduced to an ill-conditioned linear least-squares problem of
a very large dimension. One approach to solving the image
deblurring problem is to solve a regularized version of the
problem by adding to the least-squares optimization criterion
a supplementary penalizing term, that accounts for additional
desirable properties of the solution. One possible choice for
the additional term is the total variation seminorm [1-3]. By
attempting to minimize the total variation, the restored image
tends to be smooth. Several image restoration algorithms that
consider total variation regularization have been proposed,
for example [3] and [4]. It is often advantageous to use the
sparsity of the high-frequency components of the image (such
as edges), and this can be done either using wavelet methods
[5] or total variation regularization such as in [1], [2]. A
particular class of techniques to handle these kinds of regu-
larizers consists of iterative shrinkage/thresholding algorithms
as proposed in [6].

A popular regularization approach is the /¢ or Tikhonov
regularization, which has a closed-form solution. The choice of
the regularization parameter for Tikhonov-based regularization
is an active area of research. In [7], Reeves attempted to
solve the image deblurring problem by solving the regularized
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least-squares problem using the so-called generalized cross
validation (GCV) method to find the regularization parameter.
A different regularization method, named the L-curve regular-
ization for the same type of problems is proposed in [8]. The
algorithm is illustrated on a number of test problems, including
an image deblurring application.

Image restoration requires computationally intensive inversion
of very large matrices. Matrix inversion is not required only
(once) for restoring the image but also is repetitively needed
to compute the regularization parameter. In the image deblur-
ring problem, the blur matrix is constructed from the point
spread function (PSF). This matrix is structured based on
the boundary condition (BC) assumption which describes the
behavior of the image outside the scene. For computational
convenience, a periodic BC is often assumed which results
in a circulant blur matrix. Hence, the computation is done
efficiently using fast Fourier transforms (FFT). However, the
periodic BC assumption makes sense only when the image is
symmetric. Also, zero BC is usually assumed in astronomical
images where the image has a black background, and the
blur matrix in this case is Toeplitz. Thus, direct filtering type
methods cannot be used as efficiently as with circulant matri-
ces [9]. A more realistic assumption is a synthetic boundary
condition (SBC) which sensibly extends the pixels across the
boundary [10]. However, in this case, the structure of the
blur matrix does not allow for efficient implementation; so
the matrix inversion is computationally complex.

In this paper, we propose using a new approach for image
deblurring. The proposed method is based on allowing pertur-
bation into the model matrix and solving the resultant problem.
We focus on the case where the blur matrix is constructed;
namely, with SBC. To reduce the computational complexity,
we propose a technique based on the bootstrap principle. In
the following section, we will present the derivation of the
proposed method. Following the derivation, we will show how
to reduce the computational complexity in Section III. Then,
image deblurring results are presented in Section IV.

II. THE PROPOSED REGULARIZATION APPROACH

In image deblurring, we seek to restore the image using a
mathematical model of the form

b=Ax+w, (D
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where b € RM is the observed image of length M = m x n,
x € R¥ is the original image, A € R™* is a linear operator
that represents the blur matrix, and w € RM is an additive
white Gaussian noise with zero mean and standard deviation
o. Similar to [11] and [12], we perturb the mathematical
model (1) to

b~ (A+A)x+w, (2)

where A € RM*N is an unknown perturbation matrix. The
reason for adding the perturbation is to improve the structure
of the singular values of the matrix A. By deciding to go
from (1) to (2), we choose to tradeoff the model accuracy for
model robustness. We envision that, for a certain perturbation
A, the gain in robustness against blur and noise overweighs
the loss in model accuracy. It is obvious that the perturbation
should somehow be bounded—adding too much perturbation
to the model can destroy the model fidelity. Therefore, we
bound the 2-induced norm of the matrix A by a positive
amount (, i.e., ||A||2 < ¢. This bound is generally not known
and is a key subject of the proposed approach. To proceed
further, we will assume, for the time being, that ( is a constant
whose value is known. Later we will make up for the lack of
knowledge of the bound constant {. To find an estimate of x,
we pursue the following min-max approach,

min mAax||b — (A4 A)x|]2, s.t]||A]l2 <. 3)

The rationale behind (3) is that we seek an estimate of x
which minimizes the maximum residual error over all possible
bounded perturbations A. It can be shown that solving the
min-max problem (3) is equivalent to solving the uncon-
strained optimization problem [13]

minl[b — A%||> + ¢[[%|> (4)
The cost function in (4) is convex and hence the minimizer

can be obtained by differentiating the function and equating
to zero. Thus, the solution to (4) is given by

Xris = (ATA +4I) 7' AT, (5)
where v is given by
b — AX
_ Clip— Axlly ©
[1%[2

Substituting the singular-value decomposition (SVD)
A =UXVT in (5), we obtain

Xris = V(E2 +91) 7' 2UD. (7)

Substituting (7) and A = UXVT in (6) and manipulating,
results in

bTU (2% — ¢*1) (22 +41) 2 U b =0. (8)

It has been shown in [11] that a near-optimal choice of the
parameter (, is given by

o [22 (=2 +71)‘1}

where tr[-] denotes the trace of a matrix. By inserting (9) in (8)
and manipulating, we reach at the following equation

f) =u {(22 + vI)_l} tr [(22 +0) 7 UTbbTU}

—Ntr {(22 +T) UTbbTU} _0, (10)
where N is the length of the vector x. Equation (10) relates the
unknown regularization parameter to the known parameters of
the model (1). Now, we need to find a positive root of f(7).
Note that since f(v) is differentiable and its derivative f'(y)
can be easily obtained, one can use Newton’s method [14] to
obtain the root. The method can be applied by setting an initial
value v¥=9, where k denotes the iteration number. Then, we
perform the following iterations:
")

frvF)
and terminate when |f(7**1)| < e, where € is a sufficiently
small positive value and |.| denotes the absolute value. It can be
mathematically shown that Equation 11 will always converge
to a unique positive root if a certain condition that depends on
the model matrix and noise levels is satisfied. Experimental
tests have shown that this condition is always satisfied in
practical noise levels. The details of this condition are omitted
for the sake of conciseness. However, the proof of convergence
is provided in [13].

k1l — Ak k=0,1,2,--, (11)

III. COMPLEXITY REDUCTION OF THE PROPOSED METHOD

The computational complexity of the proposed approach is
dominated by the complexity of the computation of the SVD
of matrix A. In Section II, we relied on SVD to facilitate the
computations of the matrix inversions required for computing
the regularization parameter. Since we do not assume any
structure of A, computing the SVD can be computationally
demanding especially for large dimensions since its complex-
ity is of order O(M?N + N?3). To reduce the complexity
of the proposed algorithm, we utilize the powerful technique
of bootstrapping [15]. We sub-sample the image to build
K models of reduced dimensions and then compute the
regularization parameter for each sub-sample independently.
In the sequel, we will show that substantial reduction in
computational complexity can be achieved by sub-sampling
the observed image to a significantly smaller dimension. Sub-
sampling the observed image in model (1) results in the model

b; = A;%; + W,

Vie{1,2,- K}, (12)

where (-), is the sub-sampled version of the corresponding
vector/matrix in (1) and b; € RP (P < M) of length P = s x
r% € R? (Q < N), A, e RP*?Q and w € RP. K denotes
the number of sub-sampled images b; that we extract from the
observed image b. By applying the SVD on the blur matrix
Ai of the sub-sampled image, we obNtain AZ- = I:TZ-ZNJZ-V,LT. It is

2= — (9) clear that the SVD computation of A; is less computationally
tr [(22 +71) ] demanding than the SVD of the full blur matrix A since its
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Figure 1: Original test images with different dimensions.

complexity is of the order O(P2Q + Q?). By choosing P and
Q@ to be sufficiently small compared to M and N, significant
reduction in computational complexity can be achieved. For
the model in Equation (12), (10) becomes

fG) = tr {(23 1) ] e [(23 +51)" ﬂ;gisfﬂi}

_Qu [(22 +m)
=0,

2 e e~
U;fbib;fUi]
(13)

where 7; is the regularization parameter estimate obtained
from the sub-sampled image b;. Note that (10) and (13) do not
require any complex computations since the matrix inversion
is done only for diagonal matrices.

A. Sub-sampling methodology and estimate selection

One can generate a large number of sub-sampled images by
randomly drawing samples from the image. For bootstrapping
to yield good results, a sufficient number of sub-samples (K) is
needed [15]. A sub-sampled image b; with size P is obtained
by first generating a random set of indices y; C {1, M} with
cardinality P. The sub-sampled image is given by b; = b(y;),
i.e., b; contains the samples of b at indices y;. We repeat this
fori=1,2,---, K, each time using a different set of random
indices y;. Note that the size of the sub-sampled image needs
to be sufficiently large such that the sub-sampled images are
good representation of the full-image. The bootstrap estimate 7
is obtained by computing the median of 7; as follows:

4 = median(%;), Vie{l,2,---,K}.

Median has been shown to be a good estimator in bootstrap
theory [15]. Table I demonstrates the estimated regularization
parameter v for the full-image, and 4 which is the bootstrap
estimate obtained from K sub-samples each with cardinality P
(which is equivalent to sx7 in two-dimensional). In both cases,
we show the elapsed time (ET) for computing the regulariza-
tion parameter estimate and the total construction time (TCT),
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which is the ET in addition to the deblurring step. For deblur-
ring, we use an efficient iterative method called LSQR [16].
The computations were performed using MATLAB R2016a on
Intel(R) Core(TM) i7 CPU E5-2603 0 @1.80 GHz, 32.00 GB
RAM. It is obvious from Table I that using bootstrap produces

Table I: Computation time (in seconds) using the full-image
and the sub-sampled image.

Image size Full image Sub-sampled image
y ET TCT | K s 5 ET | TCT
64 x 64 0.0042 | 35.2 37.6 8 | 256 | 0.0046 | 43 | 5.7
128 x 128 | 0.0067 | 2477 | 2484 | 8 | 256 | 0.0065 | 4.1 | 6.5
275 x 183 | 0.0132 | 10864 | 10875 | 12 | 576 | 0.0134 | 6.6 | 10.4
256 x 256 | 0.0092 | 28403 | 28417 | 12 | 576 | 0.0089 | 7.3 | 13.1
450 x 301 | 0.0771 | 75622 | 75658 | 12 | 576 | 0.0779 | 5.7 | 16.7
1024 x 1024 Out-of-memory 16 | 1024 | 0.0457 | 9.7 | 27.3

nearly the same value of the regularization parameter in a
substantially shorter computational time. Using bootstrap, the
proposed method is capable of deblurring large-scale images
in an efficient manner. The proposed bootstrapping algorithm
to find the regularization parameter and restore the image is
sketched as Algorithm 1.

Algorithm 1 Proposed algorithm

1. Input image b and the PSF.

. Generate the indices y;, Vi =1,2,--- | K.

. Obtain b; = b(y;), Vi =1,2,--- , K.

. Construct Ai and compute the SVD Ai = ﬁzﬁl\:/;f
. Apply Newton’s method (11) to find ; for each b;.
. Compute the median of ¥;, Vi =1,2,--- | K.

. Construct x using LSQR [16].

~N N B WD

IV. EXPERIMENTAL RESULTS

The proposed method was tested using various grayscale
standard and natural images with low and high-resolutions
shown in Figure 1. The natural images are adopted from [17]
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and Kodak website (http://rOk.us/graphics/kodak/). Five real
world camera shake kernels adopted from [18] were used to
generate the blurry images, and a SBC is assumed. Gaussian
white noise with zero mean and three different standard
deviation values (o = 0.0005,0.005 and 0.05) was added to
the blurred images. The following benchmark methods were
used for comparison: The Augmented Lagrangian Method
for Total Variation (ALMTYV) [4], the General Framework
for Regularized, Similarity-Based Image Restoration (GFRSB)
[19], and the Generalized Iterated Shrinkage Algorithm for
Non-convex Sparse Coding (GISA) [18]. All the parameters of
the benchmark methods were set as suggested by the authors.
To give quantitative performance measures, we computed the
peak signal-to-noise ratio (PSNR) [20], and the structural
similarity (SSIM) index [21]. The plots shown in Figure 2
demonstrate the variation of the output PSNR and SSIM versus
the SNR for our proposed method and the benchmark methods
on Barbara image. It is clear that the proposed algorithm
outperforms the other three methods across the considered
SNR range. Figure 3 and Figure 4 illustrate the performance of

* GFRSB
-~ GISA
0.6 ¢ALMTV
¥-Proposed

PSNR (dB)

¥ Proposed

1 B
10 0 10 20 30 -10 0
SNR(dB)

SNR(dB)

Figure 2: PSNR and SSIM versus SNR comparison over
Barbara image.

the tested methods when applied to the Mandrill and Elephant
images, respectively. The images were severely blurred with
a motion blur kernel, and contaminated with noise level
o = 0.005. The Mandrill image shown in Figure 3 has
some fine visual details that are difficult to preserve. The
hair texture is everywhere in the image which increases the
difficulty of deblurring. In spite of the difficulty to recover
these tiny textures, one could still notice that the restored
image by the proposed method is much sharper than those
obtained from the other algorithms. The image in Figure 4 is
a typical natural image with grass and also some wrinkles on
the elephant skin. From the results, we can observe that our
method is capable of preserving these details better than the
other methods. More experimental results are available in [13].
From these results, it is evident that the proposed approach
produces images with improved visual quality compared to
ALMTYV, GFRSB and GISA. Table II and Table III show
the average PSNR and SSIM values for the deblurred images
obtained from the various methods. The average PSNR and
SSIM values were computed for each image over the five blur
kernels as suggested by [17]. From the tables, it can be seen
that our proposed method clearly outperforms all the other
algorithms in terms of the PSNR and SSIM metrics.
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Figure 3: Performance of the various methods on the Mandrill
image.

V. CONCLUSION

In this paper, we proposed a new method for the restoration
of blurred-and-noisy images. The technique is based on solv-
ing the regularized least-squares problem and applying boot-
strapping to reduce the computational complexity. Numerical
results demonstrate that the proposed algorithm outperforms
all the tested benchmark methods in terms of the output
PSNR, structural similarity as well as the visual quality of
the deblurred images.
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