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Abstract—Vector sensors are directional receivers that measure
the vectorial particle velocity associated with an acoustic wave
rather than the scalar pressure. Therefore, arrays of vector
sensors possess some desirable directional properties compared
to conventional arrays of pressure sensors. In this paper, a modal
beamformer for circular arrays of 1-D acoustic vectors sensors
are presented. Arrays of both radially and circumferentially
oriented vector sensors are considered. It is shown that the
highly directional modes of the acoustic velocity field can be
extracted from the sensor measurements using the spatial Fourier
transform. These modes are weighted and combined to form
narrow steerable beams. The highest order of mode that can be
extracted is limited by the number of vector sensors utilized
in the array. Theoretical analysis and numerical simulations
indicate that the proposed modal beamformer attains the same
directivity performance as that of circular pressure sensor array
beamformers but outperforms them in terms of white noise gain.
In addition, it uses half the number of sensors to achieve the same
directivity performance of a circular vector sensor array modal
beamformer reported previously in the literature. The proposed
method is suitable for in-air and underwater low frequencies
array processing applications.

I. INTRODUCTION

A vector sensor is a directional sensor that combines
both a conventional pressure sensor (that can measure the
scalar pressure field) as well as a particle velocity sensor
capable of measuring the vectorial particle acceleration [1]
or alternatively the particle velocity fields [2]. Combining the
particle acceleration or velocity measurements with pressure, it
is possible to estimate the intensity of the acoustic field, which
in turn is related to the direction of the net acoustic energy
propagation. Hence, an array of vector sensors can provide a
wealth of information regarding the acoustic field compared
to conventional acoustic arrays that consist only of omni-
directional pressure sensors. Modal beamforming, on the other
hand, is based on the decomposition of the acoustic field into
it’s so-called ‘modes’ and utilizing these modes for developing
compact and high-performance acoustic arrays [3]. A modal
beamformer for circular pressure arrays was derived from
an optimum processing perspective and was experimentally
validated using a 16-hydrophone array [4]. A circular modal
beamformer that relies on 2-D vector sensors was proposed
by Zou [6]. In this paper, a modal beamformer similar to that
proposed in [6] but based on 1-D particle velocity sensors is

presented. The proposed method is shown to possess several
advantages compared to existing modal beamformers designed
for both pressure and particle velocity sensor arrays.

II. THEORETICAL DEVELOPMENT

In this section, the acoustic field along a circular aperture is
defined. This is followed by the introduction of the proposed
modal beamformer for a circular array of vector sensors. In
addition, two alternative modal beamformers that exist in the
literature are briefly described.

A. The Acoustic Field Along the Circular Aperture

Consider a uniform circular array composed of M 2-D
acoustic vector sensor (AVS) as shown in Fig. 1. The AVS
is capable of making collocated measurements of the pressure
and particle velocity fields. Assume that an acoustic time har-
monic wave with an amplitude of P and an angular frequency
ω = kc (where k is the wavenumber and c is the speed of
sound) is incident at an azimuth angle ψ0 and an elevation
angle θ0. The azimuth angle is measured from the positive x-
axis in the counterclockwise direction and the elevation angle
is measured from the x-y plane with the positive sense towards
the positive z-axis.
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Fig. 1. The small circular AVS array centered at the origin of a Cartesian
coordinate system and the incoming plane wave.

The pressure field at any sensor m = 0, 1, . . . ,M along
the aperture located at the coordinates (rm = r, ψm =
2πm/M, θm = 0) is given as
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pm = P exp[ikr cos θ0 cos(ψm − ψ0)] (1)

where the imaginary number is i =
√
−1 and P represents

the pressure wave amplitude. It should be noted that the time-
harmonic term exp(iωt) is omitted in (1) for clarity. The
expansion of the pressure field given in (2) using the Jacobi-
Anger identity results in

pm = P
∞∑
n=0

εni
nJn(kr cos θ0) cos[n(ψm − ψ0)] (2)

In (2) Jn(·) is the Bessel function of the first kind, εn = 1
for n = 0 and εn = 2 otherwise. The Euler equation relates
the particle velocity (~v) to the acoustic pressure (p) through

ρ
∂~v

∂t
= −~∇ · p (3)

where ρ is the ambient mass density and ~∇ is the gradient
operator. For 2-D geometry, the gradient operator is given as

~∇ =
∂

∂r
êr +

1

r

∂

∂ψ
êψ (4)

in polar coordinates where êr and êψ are the radial and
azimuthal direction unit vectors, respectively (see Fig. 1).
Combining (2)-(4), one obtains the radial and azimuthal com-
ponents of the particle velocity measured in polar coordinates

vr,m = −V cos θ0 ·
∞∑
n=0

εni
n+1J ′n(kr cos θ0) cos[n(ψm − ψ0)]

(5a)

vψ,m =
V
kr
·
∞∑
n=0

εni
n+1nJn(kr cos θ0) sin[n(ψm−ψ0)] (5b)

In (5) the coefficient V = −P/(ρc) is the particle velocity
amplitude of the incoming wave and J ′n(·) is the derivative
of the Bessel function with respect to its argument. This
derivative of the Bessel function is computed as

J ′n(z) =
1

2
[Jn−1(z)− Jn+1(z)] . (6)

B. Modal Beamforming with Pressure Sensors

The modal beamformer for a circular array of pressure
sensors is described in this section. The derivations follow
those presented in Franklin [5]. The modal beamformer is
implemented in three steps: 1) extraction of the acoustic modes
from the measurements, 2) normalization of the mode powers,
and 3) combination of the modes for forming a steerable array
response. The first step of extracting of the modes utilizes the
spatial Fourier transform defined as

X(l) =
M−1∑
m=0

xm exp(i2πml/M) (7)

where l = 0, 1, . . . ,M − 1 are the discrete spatial frequency
indices. Applying the spatial Fourier transform given in (7) to
the pressure measurements expressed in (2), one obtains the
positive frequency Fourier coefficients in the form of

P (l) ≈ PilJl(kr cos θ0)M exp(−ilψ0) (8)

for l = 0, 1, . . . , L, which are the pressure acoustic modes of
the field. The negative frequencies l = L+1, L+2, . . . ,M−1
are dropped as they do not carry any additional information.
The highest Fourier coefficient index L is defined as L =
(M − 1)/2 when M is odd and L = M/2 − 1 when M is
even. The derivation of (8) is omitted due to space constraints.
However, it should be noted that for the approximate equality
to hold in (8), the aperture should satisfy the condition kr ≤ 1
which leads to the upper frequency bound of fmax ≤ c/(2πr).
For clarity, this upper frequency bound is assumed to be
satisfied and the approximation is replaced with an equality
in the remainder of the paper.

The higher modes of the acoustic field have lower energy.
Therefore, it is necessary to normalize the modes using the
coefficients ap(l) = [ilJl(kr)M ]−1. After normalization, the
real and imaginary parts of the positive frequency spatial
Fourier coefficients become

Re[ap(l)P (l)] = P Jl(kr cos θ0)

Jl(kr)
cos(lψ0) (9a)

Im[ap(l)P (l)] = −P Jl(kr cos θ0)

Jl(kr)
sin(lψ0) (9b)

which represent the cosine and sine modes of the acoustic
pressure field, respectively. The directivity of these modes
increase with increasing mode order. It should be noted that
unless the elevation angle of incidence θ0 known a priori, it
cannot be included in the normalization terms defined in (9).

As a final step, the modal pressure array response is
obtained by weighting the real and imaginary parts of the
normalized pressure spatial frequency coefficients given in (9)
by the corresponding real and imaginary filters defined as

wR = [w̃0, w̃1 cosψs, . . . , w̃L cos(Lψs)] (10a)

wI = [0,−w̃1 sinψs, . . . ,−w̃L sin(Lψs)] (10b)

where ψs is the desired steer azimuth angle, and w̃l for l =
0, 1, . . . , L are the relative weights of each mode. A factor
of
∑L
l=0 w̃l is added to normalize the array response to unity

when the array is steered in the direction of incidence. Relative
to a reference pressure sensor located at the center of the array,
the array response becomes

R(ψs) =

∑L
l=0

{
w̃l

Jl(kr cos θ0)
Jl(kr)

cos[l(ψs − ψ0)]
}

∑L
l=0 w̃l

. (11)

If the elevation angle of incidence is close to zero (θ0 = 0, i.e.,
the field is a 2-D acoustic field), the ratio Jl(kr cos θ0)/Jl(kr)
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approaches to unity. The resulting normalized beamformer
response becomes

R(ψs) =

∑L
l=0 w̃l cos[l(ψs − ψ0)]∑L

l=0 w̃l
(12)

C. Modal Beamforming for a Circular Array of 2-D Particle
Velocity Sensors

A modal beamformer for compact circular arrays of 2-D
particle velocity sensors was developed by Zou and Nehorai
[6]. This modal beamformer is very similar to that proposed in
this paper and is therefore briefly described here. The original
array is assumed to be a closed type aperture for which the
sensors are mounted on an elastic cylinder. To simplify the
derivations in this paper, the array is assumed to be an open
aperture which does not include the cylinder.

Applying the discrete cosine transform defined as

X(l) =
M−1∑
m=0

xm cos(2πml/M) (13)

to the radial particle velocity measurements given in (5a)
results in the coefficients

Vr(l) =
DlM

µl
cos(lψ0), (14)

for the spatial frequencies l = 0, 1, . . . , L. The coefficient µl
is defined as µl = 1 for l = 0 and µl = 2, l 6= 0, and
Dl = −Vil+1εl cos θ0J

′
l (kr cos θ0). Likewise, the application

of the discrete cosine transform to the azimuthal velocity
measurements given in (5b) yields

Vψ(l) = −ElM
µl

sin(lψ0) (15)

where El = V[il+1/(kr)]εll cos θ0J
′
l (kr cos θ0). The ra-

dial and azimuthal modes can be normalized using the
coefficients ar(l) = −[il+1J ′l (kr)M ]−1 and aψ(l)/i =
−[(il+1/kr)Jl(kr)M ]−1, respectively. A steerable response is
achieved by using the filters defined in (10). The resulting
array response is exactly the same as that obtained for the
pressure array given in (11).

D. Modal Beamforming for a Circular Array of 1-D Particle
Velocity Sensors

The modal beamformer of Zou described in the previous
section requires a set of 2-D particle velocity sensors. Such
an array is normally realized using a pair of 1-D particle
velocity sensors at each measurement point, necessitating the
use of twice as many sensors compared to the pressure array,
increasing cost and hardware complexity. In what follows, a
less complex modal beamformer based on a circular array
of equally spaced 1-D particle velocity sensors capable of
measuring only the particle velocity in the radial direction is
proposed. Applying the spatial Fourier transform given in Eq.
(7) to the radial particle velocity measurements expressed in
Eq. (5a) yields the acoustic modes in the form of

Vr(l) = −Vil+1 cos θ0J
′
l (kr cos θ0)M exp(−ilψ0), (16)

for l = 0, 1, . . . , L, where L is defined similarly to (8).
The resulting Fourier coefficients can be normalized using the
weights

ar(l) = −[il+1J ′l (kr)M ]−1 (17)

The cosine and sine modes of the velocity field can be
extracted by taking the real and imaginary parts of the spatial
Fourier coefficients as

Re[ar(l)V (l)] = V cos θ0
J ′l (kr cos θ0)

J ′l (kr)
cos(lψ0) (18a)

Im[ar(l)V (l)] = −V cos θ0
J ′l (kr cos θ0)

J ′l (kr)
sin(lψ0) (18b)

for l = 0, 1, . . . , L. The beam can be steered to the desired
direction using filter weights as defined in (10). Relative to
a reference pressure sensor located at the center of the array
whose measurements are normalized to the velocity amplitude
[i.e., V = P/(ρc)], the array response reduces to that derived
for the pressure modal beamformer given in (11).

Hence, the directivity properties of a radial particle ve-
locity based circular array of M sensors will be similar to
a pressure circular array of equal number of sensors, while
Zou’s beamformer will require twice as many sensors for
the same directivity. Furthermore, it is shown in the next
section that the radial particle velocity array attains a similar
performance against spatially uncorrelated white noise relative
to Zou’s method and is significantly more robust compared to
the pressure modal beamformer.

Typical beampatterns that can be obtained using the modal
beamformers described in this paper [i.e., (12)] steered to
ψs = 60◦ for different number of sensors M and a 1 kHz
airborne time-harmanic plane wave is shown in Fig. (2). The
modal array radius is taken as r = 57.5 mm which yields a kr
value of 1.06. For comparison, beampatterns of conventional
delay-and-sum beamformer for an array comprised of the same
number of pressure sensors but twice the size (r = 115 mm)
are also provided.

III. PERFORMANCE ANALYSIS

The most important performance metric of an array is the
improvement it provides in terms of the signal-to-noise ratio
(SNR), which is quantified as the array gain (AG). In this
section, two factors that affect the AG of the modal beamform-
ers, namely the directivity index (DI) and white noise gain
(WNG) are evaluated. A similar analysis was presented for
Zou’s beamformer with the intent of determining the optimum
beamformer parameters that maximize the combined DI and
WNG performance [7].
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Fig. 2. The beampatterns of a circular modal beamformer for an array of
size kr ≈ 1 and a) 3, b) 6, c) 9, and d) 12 sensors. For comparison, the
beampatterns of a conventional delay-and-sum beamformer for an aperture of
double the size and equal number of pressure sensors are also depicted.

A. Directivity

The directivity of an array is expressed in terms of its
directivity factor (DF) which is defined as the improvement
in SNR resulting from the beamformer relative to a single
omni-directional pressure sensor. More specifically, the DF is
expressed as

DF =

∫ 2π

0

∫ π/2
−π/2 F (ψ, θ) cos θdθdψ∫ 2π

0

∫ π/2
−π/2B(ψ, θ)F (ψ, θ) cos θdθdψ

(19)

where F (ψ, θ) is the intensity (i.e., signal power) directivity of
the noise field and B(ψ, θ) = |R(ψ, θ)|2 is the response power
or beampattern of the array. Under the assumption that the
array and reference omni-directional pressure sensor reponses
are normalized to unity for the target signal, the numerator
and denominator in (19) represent the noise power gain for the
reference sensor and the array, respectively. More commonly,
the DF is expressed logarithmically in terms of the directivity
index (DI) which defined as DI = 10log10(DF).

The 2-D and 3-D isotropic noise fields (i.e., reverberant or
diffuse noise fields) are characterized by F2D(ψ, θ) = δ(θ) and
F3D(ψ, θ) = 1, respectively [5]. The response of the modal
beamformers defined in the previous section are given in (11)
and (12) for a 2-D and 3-D field, respectively. Substituting this
response and the noise intensity directivity into (19) results in

DF2D =
2π
(∑L

l=0 w̃l

)2
∫ 2π

0

[∑L
l=0 w̃l cos(lψ)

]2
dψ

(20)

for a 2-D field and

DF3D =
4π
(∑L

l=0 w̃l

)2
∫ 2π

0

∫ π/2
−π/2

[∑L
l=0 w̃l

Jl(kr cos θ)
Jl(kr)

cos(lψ)
]2

cos θdθdψ

(21)
for a 3-D field.

Another important factor that needs to be considered is the
mode weights w̃l. The most basic approach is to use uniform
weights such as w̃l = 1. For 2-D isotropic noise, it can
be shown that uniform weighting results in a directivity of
DF2D,unif = 2(L+1)2/(L+2). In contrast, the DF for for 3-D
isotropic noise can be shown to reduce to

DF3D,unif =
4(L+ 1)2∑L
l=0 (εlDl)

(22)

where the constant εl is defined as εl = 2 for l = 0 and εl = 1
otherwise, and the coefficients Dl are computed as

D(l) =
√
π · Γ(l + 1)

Γ(l + 3/2)
(23)

with Γ(·) being the gamma function.
Although uniform weighting is the most straightforward

choice, it is not optimal in terms of directivity. The mode
weights that optimize the directivity of the array can be
obtained by solving for the coefficients w̃l that maximize
the DF. Accordingly, the optimal DF mode weights for 2-D
isotropic noise is obtained as

w̃2B,opt(l) =

{
1 if l = 0,

2 otherwise

which yields a directivity of DF2D,opt = 1 + 2L. Likewise,
for 3-D isotropic noise the optimal mode weights can be
determined as

w̃3D,opt(l) =

{
1 if l = 0,

4/D(l) otherwise,

yielding a maximum directivity of

DF3D,opt = 1 +
L∑
l=1

4

D(l)
(24)

The uniform and optimum weighted directivity results are
shown in Fig. 3 for 2-D and 3-D noise fields. The effect
of optimum weighting is negligible for 2-D noise whereas
improvements of up to 1.5 dB’s is possible in 3-D isotropic
noise fields.

B. White Noise Gain

Another type of noise that affects array performance is spa-
tially uncorrelated noise. Such noise can be induced by local
flow around the sensors and sensor electronics (electrical and
thermal). The sensitivity of the array to spatially uncorrelated
noise can be quantified using the white noise gain (WNG)
measure, which is defined as DF in the presence of spatially
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Fig. 3. The directivity index of modal beamformers as a function of the
maximum mode order (L) for different mode wieghts and noise fields.

uncorrelated noise. Recalling the assumption that the array
response is normalized to unity in the steer direction, WNG
is defined as

WNG =
1

w̄Hw̄
(25)

where w̄ is the weight applied to the measurements (includes
Fourier transformation operations, normalization terms, and
steering filter coefficients) and the superscript (·)H denotes the
Hermitian operator. As with the DF, a higher WNG is better in
terms of array performance. The numerically computed WNG
values are plotted in Fig. 4 as a function of kr for different
mode orders (L) for the pressure and particle velocity modal
beamformers as well as Zou’s mode beamformer. The WNG
performance of modal beamformers is poor, in particular, at
low frequencies. Zou’s mode beamformer slightly outperforms
the proposed radial velocity mode beamformer. Furthermore,
the particle velocity based modal beamformers attain approxi-
mately one order better performance compared to the pressure
modal arrays for mode orders L > 2.

IV. CONCLUSION

In this paper, a modal beamformer for small circular aper-
tures of 1-D particle velocity sensor arrays is introduced. The
proposed method computes the spatial Fourier transform of
the radial particle velocity field for obtaining the acoustic
modes. Although their directivity increases, the strength of the
acoustic modes decrease with increasing mode order. Hence,
a normalization factor is computed and applied to each mode,
followed by a steering filter. The performance of the resulting
beamformer is evaluated in terms of directivity and white
noise gain, and compared with two similar modal beamformers
(namely, the pressure and Zou’s 2-D particle velocity modal
beamformers). Both the conventional approach of uniform
weighting as well as optimal directivity weighting results are
presented. All three methods are shown to yield a similar di-
rectivity, albeit both the pressure and the proposed 1-D particle
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Fig. 4. WNG performance of the pressure, the proposed 1-D (radial), and
Zou’s 2-D particle velocity modal beamformers for various kr values.

velocity beamformers requiring half as many sensors as that
of the 2-D particle velocity beamformer. Both particle velocity
sensor based beamformers are shown to achieve a superior
white noise gain performance compared to the pressure array,
with Zou’s 2-D beamformer slightly outperforming the 1-D
array. Hence, the proposed modal beamformer for 1-D particle
velocity sensor arrays provides a significant improvement in
robustness to uncorrelated noise while avoiding the complexity
and cost of using 2-D particle velocity sensors.
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