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Abstract—Multi-biometrics aims at building more accurate
unified biometric decisions based on the information provided
by multiple biometric sources. Information fusion is used to
optimize the process of creating this unified decision. In previous
works dealing with score-level multi-biometric fusion, the scores
of different biometric sources belonging to the comparison of
interest are used to create the fused score. This is usually
achieved by assigning static weights for the different biometric
sources with more advanced solutions considering supplementary
dynamic information like sample quality and neighbours distance
ratio. This work proposes embedding score coherence informa-
tion in the fusion process. This is based on our assumption that
a minority of biometric sources, which points out towards a
different decision than the majority, might have faulty conclu-
sions and should be given relatively smaller role in the final
decision. The evaluation was performed on the BioSecure multi-
modal biometric database with different levels of simulated noise.
The proposed solution incorporates, and was compared to, three
baseline static weighting approaches. The enhanced performance
induced by including the coherence information within a dynamic
weighting scheme in comparison to the baseline solution was
shown by the reduction of the equal error rate by 45% to 85%
over the different test scenarios and proved to maintain high
performance when dealing with noisy data.

I. INTRODUCTION

Biometric technology aims at identifying or verifying the
identity of individuals based on their physical or behavioural
characteristics. Combining more than one biometric source
is often performed to increase the accuracy, robustness and
usability of biometrics. The different biometric sources can
be based on different characteristics, captures, algorithms, sen-
sors, or instances. Putting together the information provided
by these sources and creating a unified biometric decision is
referred to as multi-biometric fusion.

The fusion process can be applied on different levels such
as the data, feature, score, or rank level. Higher levels such as
score and rank provide a more flexible and integrable solution.
Data and feature fusion levels provide more information but
affect the integrability and may be hard to achieve in certain
multi-biometric combinations. In this work, the score-level
fusion will be considered as it provides a fair tradeoff between
performance and integrability.

This work proposes the use of the multi-biometrics scores
coherence as a supplementary source of information in the
fusion process. This is based on the assumption that if most

of the biometric sources point out to a certain decision (main-
stream), the smaller number of sources pointing elsewhere
might be misinformed (e.g. due to noisy captures) and thus
should play a smaller role in the final decision. A coherence
measure is defined and integrated in the fusion process as
a dynamic weight along with a conventional static source
weighting approach.

The proposed fusion technique is evaluated on the BioSe-
cure multi-modal biometric database [1]. Different versions of
the database were created by adding blur noise to a certain
percentage of the raw data, to create a more realistic scenario.
The proposed inclusion of coherence information proved to
reduce the equal error rates by more than 45% in comparison
to the baseline solution in all evaluation settings. More impor-
tantly, in the scenarios where noisy data is involved, including
the coherence information limited the effect of noise on the
overall performance.

The next section contains a short overview of related works
motivating and leading to the presented approach. In Section
III, the proposed solution is discussed along with the evaluated
baseline solution. The experiment setup and the achieved
results are then presented in Sections IV and V. Finally, in
Section VI, a conclusion of the work is drawn.

II. RELATED WORK

Score-level biometric fusion techniques can be categorized
into two main groups, combination-based and classification-
based fusion. Combination-based fusion consists of simple
operations performed on the normalized scores of different
biometric sources. These operations produce a combined score
that is used to build a biometric decision. One of the most
used combination rules is the weighted sum rule, where each
biometric source is assigned a relative weight that optimizes
the source effect on the final fused decision. The weights are
related to the performance metrics of the biometric sources, a
comparative study of biometric source weighting is presented
by Chia et al. [2] and later extended by Damer et al. [3].

Classification-based fusion views the biometric scores of
a certain comparison as a feature vector. A classifier is
trained to classify those vectors optimally into genuine or
impostor comparisons. Different types of classifiers were used
to perform multi-biometric fusion, some of those are support
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vector machines (SVM) [4][5][6], neural networks [7], and the
likelihood ratio methods [8].

More advanced approaches of multi-biometric fusion con-
sidered dynamic weights that adapt to the comparison set in
hand. Hui et al. proposed a dynamic weighting approach for
multi-biometric fuzzy-logic based fusion [9]. The dynamic
weights took into account the variations during data acqui-
sition (e.g. lighting, noise and user-device interactions). Other
works applied dynamic weights based on capture quality and
scenario on a feature level fusion process [10][11].

Conventionally, score-level multi-biometric fusion exclu-
sively uses the biometric comparison scores provided by the
fused biometric sources and general information about those
sources (e.g. weights). Previous works extended this concept to
include additional supplementary information. Sample quality
information related to each biometric comparison was in-
tegrated into the fusion process, resulting in accuracy gain
[12][13][14], but requires analysing the raw data. Another
source of supplementary information is the relative relation
between different comparisons. This was previously fused
with the comparison scores in the form of neighbour distance
ratios with performance boost seen especially in scenarios such
as biometric duplicate enrolment checks [6]. However, this
requires 1:N comparisons, where N is the number of enrolled
identities. In the following sections, this work proposes to
include information related to comparison scores coherence
within the fusion process.

III. METHODOLOGY

The score-level multi-biometric fusion approach presented
in this work aims at integrating supplementary information
based on the coherence of the fused scores. The coherence
here points out the level of agreement of one score with all the
other fused scores. The basic assumption is that, in a group of
decision makers (multi-biometric sources) giving an opinion
(score) on a certain topic (multi-biometric comparison), the
mainstream opinion (opinion pointed out by the majority of
decision makers) have a higher probability of being correct.
Odd (outlier) decision, made by a relatively small number of
decision makers, has a higher probability of being misinformed
or misanalysed decision (e.g. noisy capture, poor preprocess-
ing).

Within this scheme, a biometric score that has a higher level
of agreement (coherence) with the other scores, in the same
multi-biometric comparison, will be appointed a relatively
higher weight and thus have more influence on the final
decision. This is coupled with a static weight that points out
the general quality of each biometric source.

The rest of this section will introduce the used coherence
measure, the baseline static weights that will also be coupled
with the coherence based dynamic weight, and how both
weights are integrated with the scores to result in the fused
score.

A. Coherence
The coherence measure for a certain score should point out

the agreement of this score with all other scores in the same

multi-biometric comparison. Based on this, a simple coherence
measure was defined as the inverse of the average distance of
the concerned score to all other scores in the multi-biometric
comparison. Given that all scores are properly normalized, the
coherence measure of the score Sk,l (belonging to the source
k out of K sources) in a multi-biometric comparison noted by
l, is given as:

Coh(Sk,l) =
K − 1

ε+
∑

i6=k |Sk,l − Si,l|
, (1)

where ε is a small positive number to avoid zero denominator
(here, ε = 0.01).

A score with a higher coherence value points out a higher
probability for a score to be of the mainstream decision of the
multi-biometric sources, and thus, should be given a relatively
higher weight. This results in the coherence based dynamic
weight given as:

wk,l(Cohk,l) =
Cohk,l∑i=K
i=1 Cohi,l

. (2)

B. Static weights

To influence the general accuracy of each biometric source
in the multi-biometric fusion process, static weights are used to
weight the biometric scores. The static weights are constant for
each biometric source (hence, static). In this work, the static
weighting is used as a baseline solution to measure the effect
of adding the coherence information into the fusion process.
They are also used to influence this information along with
the coherence based dynamic weights as will be shown later.
Three different types of static weights are used, namely the
equal error rate weighting (EERW), the D-Prime weighting
(DPW), and the Fisher discriminant ratio weighting (FDRW).

The EERW is based on the equal error rate (EER) value
which is the common value of the false acceptance rate (FAR)
and the false rejection rate (FRR) at the operational point
where both FAR and FRR are equal. EER weighting was
used to linearly combine biometric scores in the work of Jain et
al. [15]. The EER is inverse proportional to the performance of
the biometric source. Therefore, for a multi-biometric system
that combines K biometric sources, the EER weight for a
biometric source k is given by

wk(EERk) =
1

EERk∑K
i=1

1
EERi

. (3)

The DPW is based on the D-Prime that is used to measure
the separation between the genuine and the imposter scores
[16]. High separation indicates a higher performance of the
biometric source. Given that σG

k and σI
k are the genuine scores

and imposter scores standard deviations and µG
k and µI

k are
their mean values, the D-prime is given by

d′k =
µG
k − µI

k√
(σG

k )
2 + (σI

k)
2
, (4)
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and it is directly proportional to the performance of the
biometric source and thus the weight can be calculated as:

wk(d
′
k) =

d′k∑K
i=1 d

′
i

. (5)

The third static weight considered in this work is the FDRW.
The Fisher Discriminant Ratio (FDR) as described by Lorena
and Carvalho [17] and used by Poh et al. [18] measures the
separability of classes, here genuine and imposter scores. The
higher the separability, the higher is the biometric source
performance. The FDR and the corresponding weights are
given as:

FDRk =
(µG

k − µI
k)

2

(σG
k )

2 + (σI
k)

2
, (6)

wk(FDRk) =
FDRk∑K
i=1 FDRi

. (7)

C. Fusion

To capture both the general performance of each biometric
source and the individual certainty represented by the coher-
ence, a combined weight was proposed as follows:

wk,l(Cohk,l, Stk) = βwk,l(Cohk,l) + (1− β)wk(Stk). (8)

Here, β is a constant between zero and one [0,1]. β controls
the relative effect of the dynamic and static weights. Different
values of β are evaluated to optimize the trade-off between
both types of weights. St is the static weight that can be
EERW, DPW, or FDRW.

The fused score based on the dynamic weighting is given
by

F =

K∑
i=1

wk,l(Cohk,l, Stk)Sk,l, (9)

where Sk,l is a score of the biometric source k of the
comparison l and wk,l is its corresponding dynamic weight
as in Equation 8.

IV. EXPERIMENTAL SETUP

A. Database

The database used to develop and evaluate the proposed
solution is the BioSecure multi-modal biometric database [1].
This database was acquired within the framework of the
European BioSecure Network of Excellence. This work utilize
three biometric sources out of the DS2 part of the BioSecure
database, the face (webcam, no flash) and both the left and
right middle fingers captured by an optical sensor. This data
was collected on a desktop PC environment in seven different
European institutions and totalled in 210 subjects over two
sessions.

1) Noise: to simulate a more realistic scenario, the raw
captures of both fingers and face images were subjected to
bluring using an averaging filter of the size m x m. The blurring
was performed on the second session data, considered as probe
in this work. While the data of session 1 was considered as
reference data and was not subjected to additional noise. The
noise was applied by randomly selecting the filter dimension
m to be one of {7, 9, 11, 13}.

Each probe sample of the three biometric sources was
compared to each reference sample resulting in a similarity
score. This was done using the original (noise-free) data and
the data with induced noise. This resulted in a noise-free
and a noise-induced scores databases. To create a realistic
scenario, a certain percentage of the noise-free score database
was randomly replaced by scores from the noise-induced score
database. This resulted in the four score databases used in
this work with 0%, 2.5%, 7.5%, and 15% of their scores
originating from the noise-induced probes.

2) Comparators: the following methods were used to mea-
sure the comparison score between pairs of face images and
pairs of fingerprint scans:

Face comparison: to calculate a similarity scores between
face captures, the OpenFace implementation was used [19].
OpenFace is a Python and Torch implementation based on
the work of Schroff et al. [20]. This solution utilises a deep
neural network to build a 128-dimensional unit hypersphere
face representing.

Fingerprint comparison: fingerprint comparison used the
NIST Biometric Image Software (NBIS) implementation [21].
This implementation utilised the MINDTCT algorithm [21]
to locate all minutiae in a fingerprint scan, assigning to
each minutia point its location, orientation, type, and quality.
BOZORTH3 algorithm [21] is used to perform the comparison
by using the minutiae detected by MINDTCT to determine if
two fingerprints are from the same person and same finger.

B. Experiments

The goal of our experiments is to show the effect of em-
bedding coherence information in the multi-biometric score-
level fusion process. This effect is also important in the more
realistic scenario where some of the captured data is noisy. To
achieve that, the proposed solution and the base line solutions
are tested on four different database settings. As described
in Section IV-A, the databases always included noise-free
reference data and a certain percentage of noise-induced probe
data. The four resulting score databases contains a portion of
scores originated from noisy probe data of the percentage 0%,
2.5%, 7.5%, and 15%.

To evaluate the statistical performance of the proposed so-
lutions, the database was split into three equal-sized partitions.
Experiments were performed on all possible fold combinations
where one partition is used as an evaluation set and the other
two are used as a development set. All the reported results
are the averaged results of the three evaluation/development
combinations.
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Min-max normalization was used to bring comparison
scores produced by different biometric sources to a comparable
range. Min-max normalized score is given as

S =
S′ −min{S′

k}
max{S′

k} −min{S′
k}
, (10)

where min{S′
k} and max{S′

k} are the minimum and maxi-
mum value of pre-normalization scores existing in the training
data of the corresponding biometric source, and S is the
normalized score.

The evaluation was performed on each of the four score
databases using the three different static weights EERW,
FDRW, and DPW. As in Eq. 8, β was used to control the
relative effect of each of the dynamic coherence weight and the
static weight. A β value of zero presented the baseline solution
were only the static weight is in effect. The fusion included
the three biometric sources (face and two fingerprints) under
a verification scenario.

V. RESULTS

The achieved results under different experiment settings are
presented as receiver operating characteristic (ROC) curves
and EER values. The EER is the common value of the false
acceptance rate (FAR) and false rejection rate (FRR) at the
operational point (decision threshold) where both rates are
equal. The EER value provides a general and comparable
measure of the evaluation performance, lower EER values
correspond to higher performance. ROC curves plot the false
acceptance rate (FAR) and the true acceptance rate (TAR)
at different operational points (thresholds) and presents the
trade-off performance between the two rates. In contrast to
EER values, ROC curves provides a wider insight into the
verification performance at all possible operational points. This
might be of interest for a user focused on a relatively low FAR
or FRR rate for a specific application.

The EER values achieved under different experiment set-
tings are presented in Table I. The positive effect of including
coherence information becomes apparent when comparing
the baseline approaches (β = 0) at different noisy data
percentages. When no noisy data was involved, EER was
reduced by 48% when combined with EERW and 82% when
combined with FDRW, both at β = 0.85 and in comparison
with the baseline pure static weighting (β = 0). At a noisy data
percentage of 15%, the EER reduction was 63% and 81% for
the EERW and FDRW based solution respectively (comparison
between β = 0 and β = 0.85). It must be noticed that although
the effect of the noise is clear in the baseline static weight
solutions, the achieved error rates when including coherence
information is only slightly effected by noise.

To put the presented values in prospective, the single source
EER value for the face source is 2.0% in the 0% noise-
induced data and 4.3% in the 15% noise-induced data. The
EER values for the left middle fingerprint source are 3.3%
and 4.6% respectively.

The ROC curves in Figure 1 show the effect of including
the coherence information at different operation points. The

curves are a comparison of the EERW based solution at the
baseline β = 0 and the presented coherence based solution
at β = 0.85. The improvement in the performance at very
low FAR is clear on noise-free data. More importantly, the
performance of the coherence based solution on the noise-
induced data almost matches that of the noise-free data. On
the other hand, the negative effect of the more realistic noise-
induced data on the performance of the baseline solutions is
noticeable. Similar behaviours also appears for the FDRW and
DPW based solutions.

Fig. 1: ROC curves showing the performance of the proposed
solution and the baseline using the EERW as static weight
under different percentages of noisy data.

VI. CONCLUSION

This work proposed the use of score coherence information
in multi-biometric score-level fusion. This was based on the
assumption that the minority of decision makers (biometric
sources) pointing out a different decision than the majority,
might have faulty conclusions and should be given a relatively
smaller role in the final fused decision. This was incorporated
in a dynamic weighting approach that also considers static
weights. The approach was evaluated on a database with
different level of induced noise and was compared to three
baseline static weight solutions. Including the coherence infor-
mation proved to largely enhance the biometric performance,
especially in the more realistic scenario where some of the
captured data could be slightly noisy.
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EERW DPW FDRW
Percentage of noisy data Percentage of noisy data Percentage of noisy data

β 0.00% 2.50% 7.50% 15.00% 0.00% 2.50% 7.50% 15.00% 0.00% 2.50% 7.50% 15.00%
0 0.2349 0.2349 0.3546 0.3454 0.2535 0.253 0.3709 0.358 0.6691 0.6694 0.795 0.7197
0.05 0.2307 0.2307 0.3491 0.3391 0.2473 0.247 0.3643 0.3574 0.5861 0.5861 0.6971 0.6837
0.1 0.2218 0.2218 0.3414 0.3343 0.2381 0.2375 0.3589 0.3543 0.4971 0.4968 0.4991 0.4087
0.15 0.2143 0.2141 0.3371 0.3331 0.2318 0.2315 0.3506 0.348 0.4553 0.4544 0.4851 0.384
0.2 0.2103 0.2098 0.33 0.2684 0.1686 0.1683 0.2865 0.3431 0.3703 0.3697 0.4728 0.38
0.25 0.1439 0.1434 0.2639 0.2596 0.1625 0.1623 0.2816 0.334 0.2776 0.277 0.3903 0.3643
0.3 0.1402 0.1402 0.2618 0.2621 0.1514 0.1508 0.2681 0.332 0.2598 0.2596 0.378 0.3609
0.35 0.1365 0.1362 0.2613 0.2581 0.1437 0.1437 0.2699 0.2664 0.2435 0.243 0.3663 0.3557
0.4 0.1316 0.1316 0.259 0.2553 0.1425 0.1434 0.2598 0.2604 0.2398 0.2361 0.3586 0.3514
0.45 0.1328 0.1331 0.2455 0.2418 0.1394 0.1394 0.2581 0.2547 0.2318 0.2315 0.3494 0.3437
0.5 0.1331 0.1319 0.2338 0.2309 0.1334 0.1331 0.243 0.2395 0.2195 0.2192 0.338 0.3348
0.55 0.1265 0.1299 0.2238 0.2232 0.1322 0.1311 0.2292 0.2264 0.2066 0.2109 0.3288 0.271
0.6 0.1282 0.1273 0.1574 0.1551 0.1305 0.1294 0.2206 0.2189 0.1422 0.1431 0.2533 0.255
0.65 0.1276 0.1268 0.15 0.1465 0.1276 0.1268 0.1505 0.1477 0.1328 0.1328 0.2307 0.2378
0.7 0.1219 0.1213 0.1411 0.1402 0.1236 0.1276 0.1457 0.1439 0.1302 0.1296 0.2189 0.2204
0.75 0.1242 0.1236 0.1336 0.1334 0.1228 0.1222 0.1334 0.1379 0.1245 0.1305 0.1522 0.1497
0.8 0.1262 0.1253 0.1322 0.1314 0.1248 0.1239 0.1311 0.1296 0.1251 0.1242 0.1431 0.1405
0.85 0.1219 0.1211 0.1259 0.1294 0.1216 0.1208 0.1314 0.1294 0.1216 0.1208 0.1348 0.1359
0.9 0.1251 0.1242 0.1268 0.1245 0.1248 0.1239 0.1265 0.1253 0.1219 0.1211 0.1256 0.1296
0.95 0.1262 0.1256 0.1294 0.1253 0.1259 0.1253 0.1291 0.1248 0.1256 0.1251 0.1282 0.1245
1 0.1268 0.1265 0.1314 0.1242 0.1268 0.1265 0.1314 0.1242 0.1268 0.1265 0.1314 0.1242

TABLE I: The achieved EER values (in percentage) for the different baseline solutions and with different levels of the proposed
score coherence influence (β) under different percentage of noise-induced data. The lowest range of error rates per experiment
setting (column) are in bold.
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E. González-Agulla, E. O. Muras, S. Garcia-Salicetti, L. Allano, V. Ly,
B. Dorizzi, J. Kittler, T. Bourlai, N. Poh, F. Deravi, M. W. R. Ng,
M. C. Fairhurst, J. Hennebert, A. Humm, M. Tistarelli, L. Brodo,
J. Richiardi, A. Drygajlo, H. Ganster, F. Sukno, S. Pavani, A. F.
Frangi, L. Akarun, and A. Savran, “The multiscenario multienvironment
biosecure multimodal database (BMDB),” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 6, pp. 1097–1111, 2010.

[2] C. Chia, N. Sherkat, and L. Nolle, “Towards a best linear combination
for multimodal biometric fusion,” in Pattern Recognition (ICPR), 2010
20th International Conference on, 2010, pp. 1176–1179.

[3] N. Damer, A. Opel, and A. Nouak, “Biometric source weighting in
multi-biometric fusion: Towards a generalized and robust solution,” in
22nd European Signal Processing Conference, EUSIPCO 2014, Lisbon,
Portugal, September 1-5, 2014. IEEE, 2014, pp. 1382–1386.

[4] R. Singh, M. Vatsa, and A. Noore, “Intelligent biometric information
fusion using support vector machine,” in Soft Computing in Image Pro-
cessing, ser. Studies in Fuzziness and Soft Computing, M. Nachtegael,
D. Van der Weken, E. Kerre, and W. Philips, Eds. Springer Berlin
Heidelberg, 2007, vol. 210, pp. 325–349.

[5] B. Gutschoven and P. Verlinde, “Multi-modal identity verification using
support vector machines (svm),” in Information Fusion, 2000. FUSION
2000. Proceedings of the Third International Conference on, vol. 2, July
2000, pp. THB3/3–THB3/8.

[6] N. Damer and A. Opel, “Multi-biometric score-level fusion and the
integration of the neighbors distance ratio,” in Image Analysis and
Recognition - 11th International Conference, ICIAR 2014, Vilamoura,
Portugal, October 22-24, 2014, Proceedings, Part II, ser. Lecture Notes
in Computer Science, A. J. C. Campilho and M. S. Kamel, Eds., vol.
8815. Springer, 2014, pp. 85–93.

[7] F. Alsaade, “A study of neural network and its properties of training and
adaptability in enhancing accuracy in a multimodal biometrics scenario,”
Information Technology Journal, 2010.

[8] K. Nandakumar, Y. Chen, S. C. Dass, and A. Jain, “Likelihood ratio-
based biometric score fusion,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 342–347, Feb. 2008.

[9] H. Hui, H. Meng, and M.-W. Mak, “Adaptive weight estimation in multi-
biometric verification using fuzzy logic decision fusion,” in Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, vol. 1, April 2007, pp. I–501–I–504.

[10] Q. Wu, L. Wang, X. Geng, M. Li, and X. He, “Dynamic biometrics fu-
sion at feature level for video- based human recognition,” in Proceedings
of Image and Vision Computing New Zealand, pp. 152157, Hamilton,
New Zealand, 2007.

[11] Y. Yang, K. Lin, F. Han, and Z. Zhang, “Dynamic weighting for
effective fusion of fingerprint and finger vein,” in Progress in Intelligent
Computing and Applications Volume1, Number1,October 2012, 2012.

[12] K. Nandakumar, Y. Chen, A. K. Jain, and S. C. Dass, “Quality-based
score level fusion in multibiometric systems,” in Proceedings of the
18th International Conference on Pattern Recognition - Volume 04, ser.
ICPR ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
473–476.

[13] N. Poh and J. Kittler, “A family of methods for quality-based multimodal
biometric fusion using generative classifiers,” in ICARCV, 2008, pp.
1162–1167.

[14] N. Poh, A. Merati, and J. Kittler, “Making better biometric decisions
with quality and cohort information: A case study in fingerprint ver-
ification,” in Proc. 17th European Signal Processing Conf. (Eusipco),
Glasgow, 2009, pp. 70–74.

[15] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in mul-
timodal biometric systems,” Pattern Recognition, vol. 38, no. 12, pp.
2270 – 2285, 2005.

[16] R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large-scale
evaluation of multimodal biometric authentication using state-of-the-art
systems,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 27, no. 3, 2005.

[17] A. C. Lorena and A. C. P. L. F. de Carvalho, “Building binary-tree-
based multiclass classifiers using separability measures,” Neurocomput.,
vol. 73, no. 16-18, pp. 2837–2845, Oct. 2010.

[18] N. Poh and S. Bengio, “A study of the effects of score normalisation
prior to fusion in biometric authentication tasks,” IDIAP, Idiap-RR Idiap-
RR-69-2004, 0 2004.

[19] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “Openface: A general-
purpose face recognition library with mobile applications,” CMU-CS-16-
118, CMU School of Computer Science, Tech. Rep., 2016.

[20] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
815–823.

[21] C. Watson, M. Garris, E. Tabassi, C. Wilson, R. McCabe, S. Janet, K. Ko,
N. I. of Standards, and T. (U.S.), User’s Guide to NIST Biometric Image
Software (NBIS), 2007.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2259


