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Abstract—In this paper we investigate the application of
feature extraction and machine learning techniques to fault
identification in power systems. Specifically we implement the
novel application of Permutation Entropy-based measures known
as Weighted Permutation and Dispersion Entropy to field Electro-
Magnetic Interference (EMI) signals for classification of dis-
charge sources, also called conditions, such as partial discharge,
arcing and corona which arise from various assets of different
power sites. This work introduces two main contributions:
the application of entropy measures in condition monitoring
and the classification of real field EMI captured signals. The
two simple and low dimension features are fed to a Multi-
Class Support Vector Machine for the classification of different
discharge sources contained in the EMI signals. Classification
was performed to distinguish between the conditions observed
within each site and between all sites. Results demonstrate that
the proposed approach separated and identified the discharge
sources successfully.

I. INTRODUCTION

Condition monitoring of high voltage power plants plays an
important role for the owning companies. Power systems are
a compound of generators, motors, transformers, and cables
that jointly contribute to power generation [1]. Failure in any
of these assets may be critical causing the whole system to go
down resulting in high maintenance and replacement costs,
in addition to increased risk for the field workers leading to
fines and civil complaints [2]. These failures are often due to
defects that occur in different types. Partial Discharge (PD)
is an indication of insulation degradation which is considered
dangerous for an asset [3]. It is seen as the most significant
tool for insulation condition assessment [4]. Corona is another
fault which falls under the category of PD discharge sources
[2]. Arcing is a further electrical discharge that occurs through
an insulating medium [5] when electric current is transmitted
through gas. These two latter faults are very common in
power transformers [6]. This paper investigates faults that
occur due to insulation problem including PD [7] and arcing.
EMI is the method employed to capture external discharges
on the insulation area or in the air [8]. Early detection
of the defects would allow decision making to circumvent
the previously cited consequences. Most significantly it will
benefit the power plant companies from maximising return
of investment, revenue and business profit. Modern solutions
for PD fault detection involve machine learning classification

techniques combined with feature extraction methods [9]. This
approach was exploited in the literature for classification of PD
types in power systems [10] [11]. In [12] authors used image-
oriented features extracted from phase resolved plot of PD
signals and separated PD sources using different classifiers:
Back-Propagation Neural Network (BPNN), Fuzzy k-Nearest
Neighbour Classifier (FkNNC) and Support Vector Machine
(SVM) for pattern recognition. Classification of multiple PD
sources (void, air-corona and oil-corona) was performed in
[13] by means of Probabilistic Neural Network (PNN) and
statistical measures as features including mean deviation and
quartile deviation, calculated on the Phase Resolved PD
(PRPD) plots. Corona, internal, floating and surface discharges
were successfully classified in [15] with high accuracy using
PNN classifier which was fed with the Probability Density
Function (PDF) of wavelet coefficients features for each PD
source in order to determine their fingerprint. A comparison
between classification of PD sources using different classifiers
PNN and SVM was performed in [16]. It was found that
SVM slightly outperforms PNN in terms of accuracy. Some
work on the application of signal processing techniques to
arcing fault identification has been published in the literature.
Discrete Wavelet Transform (DWT) was employed in [17] to
detect arc fault features in PhotoVoltaic (PV) systems using
synthetic data. However, the study did not apply classification
techniques to distinguish between the presence and absence
of arc faults. Polarisation and Depolarisation Current (DPC)
analysis was used in [18] along with Artificial Neural Network
(ANN) for multiple conditions classification, including normal
condition, PD, arcing and overheating in a power transformer.
This method was very successful using the Depolarisation
Current feature only where good classification accuracy was
achieved. The analysis and classification of PD in previous
work cited earlier demonstrated that the different discharge
sources have a unique fingerprint that can be quantified with
the help of feature extraction techniques. Most of these pa-
pers employed simulated PD or arcing data using particular
experimental set ups. However, classification of real field
signals measured using EMI technique has not previously been
presented. Inspired by previous work, we extract simple and
computationally low features based on Permutation Entropy
(PE) known as Dispersion Entropy (DE) and Weighted Permu-
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tation Entropy (WPE) from a number of EMI discharge faults
signals. The two features are fed into a Multi-Class Support
Vector Machine (MC-SVM) classifier in order to separate
the multiple EMI sources. The data was collected from three
different high voltage power plants which were reported to
contain discharge faults among other conditions. More details
regarding discharge sources classification and the database will
be discussed later in this paper. The next section introduces
the principles of the feature extraction techniques. Section 3
briefly defines the theory of the MC-SVM classifier used for
multiple discharge sources separation. Section 4 describes the
database and classification approach and presents the results.
Finally the last section draws a conclusion on this work and
provides suggestions on future work.

II. FEATURE EXTRACTION

A. Weighted Permutation Entropy

WPE is a modified version of PE that combines important
information retrieved from a time series in order to save the
signal amplitude [19]. First, we denote vectors and scalars
by upper and lower case respectively. We consider the time
series data X={x1, x2, ..., xN} with length N . The time series
is embedded into a space of m dimension and a delay τ
to obtain the vector Xm,τ

j = {xj , xj+τ , ..., xj+(m−1)τ}; j =
1, 2, ..., N − (m− 1)τ . For embedded dimension m a number
of m! permutation patterns πi are created. Each vector Xj

is mapped to a permutation pattern πi in the m dimensional
space and is characterised by weight wj which is calculated
based on the variance of each neighbour’s vector Xm,τ

j as:

wj(s) =
1

m

m∑
k=1

(x(j+(k−1)τ) −Xm,τ
j )2; s = 1, 2, ...S (1)

where S is the number of possible amplitude variations that
correspond to the same ordinal pattern, as illustrated in Figure
1, and Xm,τ

j denotes the mean of Xj which is defined as
follows.

Xm,τ
j =

1

m

m∑
k=1

xj+(k−1)τ (2)

Fig. 1: Various pattern examples corresponding to the same
pattern

The weighted probabilities of occurrence for each pattern
πm,τi can then be estimated by:

pw(πm,τi ) =

∑
j≤N 1u:type(u)=πi(X

m,τ
j ).wj∑

j≤N 1u:type(u)∈Π(Xm,τ
j ).wj

(3)

where m is the length of sequence to compare and τ is the
time delay. The mapping of the symbol to the ordinal pattern
is denoted as type(.) and the m! symbols {πm,τi }m!

i denoted
as Π. The indicator function 1A(u) of a set A is defined as:

1A(u) =

{
1 if u ∈ A
0 if u /∈ A

WPE can then be estimated based on Shannon Entropy [20]
as:

WPE(m, τ) = −
∑

i:πm,τi ∈Π

pw(πm,τi ).log(pw(πm,τi )) (4)

WPE has previously been exploited to analyse non-linear
time series [21] which is our motivation to investigate its
performance as a feature for the discharge sources since they
exhibit non-stationary nature.

B. Dispersion Entropy

DE was developed in [22] to overcome (PE) and Sample En-
tropy (SE) limitations. SE is claimed to be slow in computation
particularly for long time series and PE neglects information
of the mean of amplitude values and their variations [23], this
PE limitation has also been addressed by considering WPE.
DE is computed in the following steps for a time series signal
X= {x1, x2, ..., xN}, with length of N , which is mapped to c
classes. First, let X be mapped to Y= {y1, y2, ..., yN} using
the Normal Cumulative Distribution Function (NCDF). Next,
each yj ; j = 1, ..., N is assigned a class from 1 to c linearly
as follows.

zcj = round(c.yj + 0.5) (5)

This provides N members of the classified time series. Here
other linear or non-linear methods can also be employed.

Next, embedding vectors Zm,ci with dimension m and time
delay d are created:

Zm,ci = {zci , zci+d, ..., zci+(m−1)d}; i = 1, 2, ..., N−(m−1)d
(6)

The latter is mapped to a dispersion pattern πvov1...vm−1
,

among cm possible dispersion patterns, in that v0 = zci , v1 =
zci+d, ..., vm−1 = zci+(m−1)d.

The dispersion probability of occurrence for each pattern is
then calculated as follows.

(7)
p(πvov1...vm−1)

=

∑
i≤N−(m−1)d 1u:type(u)=πvov1...vm−1

(Zm,ci )

N − (m− 1)d

Finally, the DE value is obtained based on Shannon Entropy
as follows.

DE(m, c, d) = −
∑

p(πvov1...vm−1
).log(p(πvov1...vm−1

))
(8)

The calculated DE value quantifies the spreading in a set of
time series which can be useful to characterise the differences
between a number of different signal behaviours.
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III. CLASSIFICATION ALGORITHM

SVM is a regression and binary classification method which
was developed in the early 90s by Vapnik [24]. It seeks to
locate an optimum plane that separates two groups of data.
This algorithm is used extensively because of its ability to deal
with large features whilst having high detection accuracy when
compared to other classification algorithms such as Neural
Networks (NN) and Random Forests [25]. A potential issue
with the original SVM is that it was designed for binary
classification. This is not suitable for the classification of
more than two conditions which is the case in this paper.
This was addressed by employing MC-SVM using the One-
Against-One (OAO) approach where k(k − 1)/2 models are
constructed [26]. Each one is trained on two classes, p and
q, as a normal binary classification. The testing is performed
through a voting strategy called ”Max Win”. If the test sample
is predicted to belong to the pth class then the vote for this
class is incremented by one. The class with the highest vote
is selected as the prediction. For an optimum performance,
suitable input parameters and kernel function must be used.
In this work, a grid search method was employed to find
the optimum parameters which appeared to be Radial Basis
Function (RBF) with standard deviation σ = 0.5. The RBF
equation is expressed as:

K(xi, xj) = e−
||xi−xj ||

2

2σ2 (9)

where xi is the data input, yi is the respective label, and i =
1, 2, ..., L is the number of data sample. It is assumed that
the data points belong to two classes “1”and “-1”. Each data
point is non-linearly mapped to a feature space separated by
a hyperplane with the basic geometric equation:

f(x) = ω.x+ b = 0 (10)

where,
• b is a scalar.
• ω is L-dimensional vector.

The latter are the key parameters to determine the hyperplane
position. If b = 0, the hyperplane will pass by the origin.
Otherwise, the margin is created or increased. The parallel
hyperplanes that separate the two different data classes are
defined in Equations 11 and 12 for the first and second class
respectively.

ω.x+ b = 1 (11)

ω.x+ b = −1 (12)

Through geometric calculations, the distance between the
hyperplanes i.e. the margin width is 2

|w| . In order to maximise
it |w| should be minimised which brings in the criteria: w.xi+
b ≥ 1 for the first class or w.xi + b ≥ −1 for the second one.
This will force the points from each class not to exceed the
class hyperplanes i.e. the support vectors. The samples located
on the hyperplanes are named support vectors.

The hyperplane is obtained as a solution to the optimisation
problem in Equation 13 by taking into consideration the noise

slack variable ζi and the error penalty C which was set as an
optimum value of C = 1.05 in this work based on the findings
of a grid search.

min
1

2
||w||2+C

M∑
i=1

ζi (13)

s.t.

{
yi(w

T .xi + b) ≥ 1− ζi
ζi ≥ 0, i = 1, ...,M

where ζi represents the distance between the margin and
the data point xi which is in error.

IV. APPLICATION

A. The database

The signals were measured through a High Frequency
Current Transformer (HFCT) connected around the neutral
earth cable of the asset in order to pick up electromagnetically
the PD signals. The latter were recorded at a sampling rate
of 24kHz using a PDS200 tool which follows the CISPR16
standard for frequency measurement. The PDS200 is a PD
surveyor device which detects and analyses EMI radiations in
addition to Radio Frequency Interference (RFI). It employs
Quasi peak detection which provides the frequency spectrum
of the captured EMI signals. The time resolved data are
obtained for further analysis based on the peaks of interest
in the frequency spectrum provided by the PDS200. The
most common approach is to convert time signals to audio
format which are examined by EMI experts in order to
identify and label the conditions contained in the signals.
These “expert”labels are used for training the classification
algorithm. The data was obtained from three different power
plants and is described as follows.

1) Site 1: The data was recorded from the Neutral Earth
of the generator and includes a total number of 13 files where
each one contains 500 cycles over 10 seconds duration.

2) Site 2: The data collected at this site includes 9 files of
500 cycles from which 6 were recorded from a generator, 2
from an Isolated-Phase Bus and 1 from a transformer.

3) Site 3: The data collected at this site includes 8 files of
500 cycles from which 6 were recorded from a generator and
2 from an Isolated-Phase Bus.

The identified EMI conditions contained within the data for
each site are listed in Table II. The faults’ notation are defined
in Table I.

TABLE I: faults’ labels

Fault Label
Arcing A
Corona C

Data Modulation D
Exciter E
Minor m
Noise N

Non-Variable Frequency Drive NVFD
Partial Discharge PD

Process Noise PN
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TABLE II: Detected faults in each site

Site Faults
1 C, N, PN, mPD
2 mPD+mA, PD+mA, PD+A, PD, PN, D
3 E+mPD+D, PN, NVFD, PD, E+mPD,E

B. Methodology

The captured data are not sufficient to use with the machine
learning algorithm. Thus, the signals were split into smaller
segments of 4000 samples in order to have more instances for
the classifier. WPE and DE are computed over the segments
as features to quantify the signature of each unique condition.
This provided a total of 60 instances per signal with two
features. The feature vectors are then implemented in the MC-
SVM OAO algorithm for classification. The ML models are
trained and tested using a ten-fold hold-on cross validation
method where 10% of the total data set are held for testing
and the remaining 90% are used for training.

C. Results

The feature space of DE versus WPE was plotted for each
site as well as for the common conditions between all sites.
The common conditions are a subset of the measured data
in the three sites. With the help of feature extraction, the
time domain signals were mapped to a different space that
helps to distinguish between the multiple conditions. Figure 2
illustrates the feature space of Site 1 data. It is observed that
there is an overlap between N, C, C+E and mPD conditions
which may degrade the classification accuracy. Similar overlap
occurs on Site 2 feature space in Figure 3. The classification
performance in this site might be lower than Site 1 because
the overlap seems to be more significant. On the contrary,
Figure 4 illustrates clear separation of the feature clusters in
Site 3. Thus, high classification accuracy is expected here.
Figure 5 shows that the three common conditions can be well
separated using these two features only. It is observed that
all PD features are concentrated in the range of DE=[0.1-0.8]
and they are spread across WPE= [1.57-1.77]. Most of the
PN features are clustered around DE=2 and WPE=[1.7-1.78],
however a few instances are spread over DE=[0.1-1.7] where
some overlap with PD occurs. The significant finding from
Figure 5 is that PD instances can be grouped and distinguished
from the other conditions regardless of the sites in which the
data was captured. The separation in the feature space plots
is validated by the classification accuracy results presented in
Table III.

The top accuracy (99%) was achieved for Site 3 and all sites
as expected from the 2-D feature space plots. In second place
comes Site 1 with a good performance of 96%. The lowest
accuracy (92%) was obtained for Site 2, still this is considered
as a good performance. Although the classification accuracy
was lower for Site 1 and 2, it was potentially higher as the
later contained only a subset of the conditions that occurred
during the data collection at all sites.

Fig. 2: Feature space of Site 1 data

Fig. 3: Feature space of Site 2 data

Fig. 4: Feature space of Site 3 data

TABLE III: Classification Results using WPE and DE features

Site Accuracy %

1 96%
2 92%
3 99%

Common between sites 99%
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Fig. 5: Feature space of Sites 1, 2 and 3 data

V. CONCLUSIONS

In this paper a novel application of DE and WPE features
combined with MC-SVM was investigated on EMI real field
captured data for discharge source classification. The feature
space plots demonstrate that the different conditions contained
in EMI data can be separated with minor overlap using the
two entropy measures and it is possible to establish their clas-
sification using the MC-SVM algorithm with good accuracy.
The significant contributions in this paper are the classification
of EMI field captured data and the classification of the same
discharge type within different sites. It is important to highlight
that the top classification accuracy was achieved between the
sites in addition to classification in Site 3. This brings to
conclusion that the proposed approach may be exploited for
EMI condition monitoring for power plant assets. This work
opens possible suggestions to further separate the overlap-
ping conditions using other feature extraction techniques and
second stage classification for fault prognosis and alerting.
Investigation of feature extraction techniques to identify fault
location can also be conducted.
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