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Abstract—This paper proposes a novel method based on
the archetypal analysis (AA) for bird activity detection (BAD)
task. The proposed method extracts a convex representation
(frame-wise) by projecting a given audio signal on to a learned
dictionary. The AA based dictionary is trained only on bird class
signals, which makes the method robust to background noise.
Further, it is shown that due to the inherent sparsity property of
convex representations, non-bird class signals will have a denser
representation as compared to the bird counterpart, which helps
in effective discrimination. In order to detect presence/absence
of bird vocalization, a fixed length representation is obtained
by averaging the obtained frame wise representations of an
audio signal. Classification of these fixed length representations is
performed using support vector machines (SVM) with a dynamic
kernel. In this work, we propose a variant of probabilistic
sequence kernel called sparse convex sequence kernel (SCSK)
for the BAD task. Experimental results show that the proposed
method can efficiently discriminate bird from non-bird class
signals.

Index Terms—Archetypal analysis, dictionary learning, kernel
methods, bird activity detection.

I. INTRODUCTION

Bird audio detection (BAD) problem deals with identifying

the presence or absence of bird vocalization in a given

audio signal [1]. It serves as an important preliminary step

in the automatic monitoring of biodiversity patterns such as

habitats and landscapes changes, population trends etc [2], [3].

The challenge in BAD is to distinguish between informative

acoustic events and background activity which may arise due

to multiple factors e.g., humans, machines, natural phenomena

(such as wind and rain) [2], [4]. For instance, there is a high

probability to miss-classify a signal with low amplitude bird

vocalization as non-bird class signal or a signal containing

bursts of background noise as bird class signal [5], [6]. Hence,

there is a need to develop a BAD method which is robust to

background noise.

In this work, we propose a robust method for BAD task.

The proposed method is based on the idea that, given a

suitable dictionary, the representations estimated for frames

corresponding to the bird and non-bird audio (background)

are sparse and dense, respectively. Here, the dictionary D is

learned by factorizing the training signal matrix X (consist-

ing of short-term frame wise feature vectors from multiple

recordings of only bird class) using archetypal analysis (AA)

[7]. In the next step, a convex representation is obtained using

this dictionary for both bird and non-bird class signal frames

as xi= Dai. The entries in the weight vector ai represent

the contribution dictionary atoms in the signal. Due to the

inherent sparsity property of convex representations [8], the

obtained weight vector for bird and non-bird class signals

is significantly different. Since archetypes are learned from

only bird class, non-bird class signals will have a denser

representation compared to the bird counterpart, which helps

in effective discrimination. Thus, the proposed method makes

no assumption on the type of non-bird sounds (also referred

as background noise) in the signal, neither requires any kind

of background adaptation. In addition, the proposed method

require very less amount of data to learn the dictionary, which

is advantageous in BAD task where the labeled training data

is limited.

In order to address the variability in duration of audio

signals, the proposed method extracts a fixed length repre-

sentation from a given signal to detect presence/absence of

bird vocalizations. This is done by averaging the obtained

frame wise representations of a audio signal. Classification of

these fixed length representations is performed using support

vector machines (SVM) with a dynamic kernel [9]. To this

aim, we propose archetypal analysis (AA) [7] based sparse

convex sequence kernel (SCSK) for the BAD task. Further,

to mitigate channel and environment variations, the extracted

short-time features are preprocessed with cepstral mean and

variance normalization (CMVN) [10], and short-time feature

warping (Gaussianization) techniques [11], which are widely

used in context of automatic speaker recognition.

The key idea of the proposed method is that given a suitable

dictionary, the representations obtained for bird and non-bird

audio signals are sparse and non-sparse, respectively. In this

work, we propose a novel sparse convex sequence kernel based

on archetypal analysis for bird activity detection. It is also

demonstrated that the proposed method is effective, even with

less amount of training data.

The rest of the paper is organized as follows: A briefly

overview of dynamic kernels is presented in Section II. We

then introduce the proposed SCSK framework for BAD in

Section III. Section IV demonstrates the experimental results,

and finally the summary of the paper is given in Section V.

II. DYNAMIC KERNELS FOR VARYING LENGTH PATTERN

CLASSIFICATION

As a general practice, an audio signal is processed on a

short-time frame basis, and is represented as a sequential

pattern i.e., a set of local feature/representation for each frame
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[12]. However, depending on duration of the audio signal, the

resultant sequential pattern is of varying length. SVM classifier

with dynamic kernels is one of the widely used approaches

for classification of such varying length patterns [12]. These

kernels are used for feature sets with different cardinalities by

either finding the similarity between two sets or by mapping

a feature set to a fixed length representation [12]. Some of the

state-of-the-art dynamic kernels include Probabilistic sequence

kernel (PSK) [13], GMM supervector kernel [14], GMM-based

intermediate matching kernel [12] and GMM-based pyramid

match kernel [15].

Recently, work in [16] have shown the application of PSK

for bird species identification. Here, a set of local feature

vectors is mapped to a fixed length representation, known as

the probabilistic alignment vector. This probabilistic alignment

vector is a concatenation of responsibility terms calculated

by aligning the feature vector with 2Q mixtures, Q from a

universal background model (UBM)-GMM, and Q from class-

specific GMM [9] [17]. The final fixed length feature consists

of the mean vector of all probabilistic alignment vectors of the

sequential pattern. In this work we propose a variant of PSK

based on AA, which exploits the sparsity of bird vocalization

in a learned dictionary, and is discussed in the next section.

III. PROPOSED SPARSE CONVEX SEQUENCE KERNEL FOR

BAD

In contrast to the UBM-GMM based dynamic kernels,

we propose archetypal analysis (AA) based sparse convex

sequence kernel (SCSK) for the task of bird activity detec-

tion. AA is a form of matrix factorization technique which

decompose the data as convex combinations of extremal

points, which in turn lie on the convex hull of the data and

are themselves restricted to being a convex combinations of

individual observations [7]. In contrast to centroids (as in the

GMM), archetypes characterize extremal rather than average

properties of the given data, and therefore leads to a more

compact representation [18], [19]. Further, compared to the

GMM, AA require less amount of data to effectively model all

the variations [18]. This is advantageous in BAD task, where

labeled training data corresponding to bird class is limited.

Consider matrix X = [X1 . . .XU ] = {xi}
l
i=1

consisting

of l feature vectors xi ∈ R
n from U training audio signals.

The corresponding weight vectors ai ∈ R
d are computed via

AA by solving the following non-convex optimization problem

with simplex constraints:

argmin
B,A

bj∈∆l,ai∈∆d

‖X−DA‖2F = ‖X−XBA‖2F ,

∆l , [b � 0,‖b‖1 = 1],∆d , [a � 0, ‖a‖1 = 1]

(1)

Here, the columns of D = XB ∈ R
n×d are the inferred

archetypes. Problem (1) is solved via alternating minimization

for B and A using quadratic programming (QP) solvers.

Note that representation obtained via AA is convex i.e., its

entries are positive and sum to one. Hence, ai can also be

considered as a probabilistic alignment vectors, in which each
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Fig. 1. (a) Bird class audio signal, and (b) its convex representation in
the learned archetypal dictionary with 128 atoms (see Section IV for more
experimental details on dictionary learning).

element represents the contribution of the learned archetype in

representation of a feature vector xi. Once the archetypes are

learned, a given audio signal (in matrix form X
U = {xt}

T
t=1,

where {xt} is the tth frame) can be represented as a fixed

length representation as

Φ(XU ) =
1

T

T∑

t=1

ât. (2)

Here, the probabilistic alignment vector ât corresponding to a

audio frame xt, is computed as

ât = argmin
at∈∆d

‖xt −Dat‖
2

F ,∆d , [a � 0, ‖a‖1 = 1]. (3)

The simplex constraints inherently enforces sparseness i.e.,

only a few of the archetypes in D will contribute to at [8].

In order to achieve better discrimination among bird and non-

bird classes, AA is done using only audio signals from the

bird class. Due to the inherent sparsity property of AA, the

resultant weight vector for bird class is sparse as compared to

non-bird signals, resulting in effective discrimination between

Φ representations of both the classes. As an illustration, Fig. 1

shows the convex representation (obtained by concatenating

frame-wise representation) of an example audio signal in the

learned archetypal dictionary. It can be observed that there is

a distinct jump in the weight vector coefficients corresponds

to the bird vocalization. The same is not true for burst of

background noise or non-bird segments of the signal.

After obtaining the fixed length representation, the SCSK

between two audio signals X
U and X

V is computed as

KSCSK(X
U ,XV ) = Φ(XU )TS−1Φ(XV ),

S =
1

l
R

T
R,

(4)

where S denotes the correlation matrix, and rows of matrix R

are the probabilistic alignment vectors of the feature vectors

of the training set [13]. Note that this approach ignores any

sequence order information, i.e., the result for a given audio

and its reverse version will be the same. Fig. 2 illustrates

the proposed framework based on SCSK for the task of bird

activity detection.
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Fig. 2. Proposed SCSK based framework for BAD

A. Building optimal SCSK from training data

It is important to note that the complexity of dynamic ker-

nels based approaches increases exponentially with the number

of training examples. Hence, the use of SCSK is inefficient, as

testing phase will be very slow and computationally expensive,

prohibiting real-time application. To address this, we propose

to use a subset of training data to build the kernel. However,

manually selecting a subset of the training data to seed the

dictionary is not only tedious but also sub-optimal since there

is no guarantee that such selection form the best kernel. In

order to select a suitable subset, we used the Fast Exemplar

Selection (FES) algorithm as proposed in [20]. FES extracts

a linearly independent subset of signals which captures the

full range of the dataset. In the BAD task, signals from the

bird class lie in a union of subspaces (corresponding to bird

vocalizations and background activity). If at least t linearly

independent columns that span each t-dimensional subspace

exist in X, it has been shown in [20] that FES extracts an

optimal subset.

B. Advantages of the proposed method

• The inherent sparsity of convex representation helps in

increasing the classification accuracy.

• SCSK can be trained from less amount of training data.

• The proposed method has the advantage of reduced com-

putational cost during testing, since computing a convex

representation or projecting onto the simplex is much

more faster than computing a sparse representation (as

in dictionary learning) or probability vector for GMM.

• The proposed method works effectively even with less

amount of training data.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of proposed AA

based kernel for the BAD task. Initially, various datasets used

in this work are explained, along with the details about various

experimental setting. The performance of proposed method is

evaluated on two datasets.

A. Datasets Used

In this subsection, we provide a detailed explanation about

the two datasets used for BAD task. The proposed framework

is evaluated on data that was released as a part of BAD

challenge [1]. The data is divided into two sets: development

data and testing data. Since labels for testing data are not

available, we have used development data for both training

and testing purposes. This data is further divided into two

sets based on the sources: Freefield and Warblr. Freefield

recordings are collected by Freesound project [21] around the

world in different environments. It consists of 1, 935 and 5, 755
recordings labeled under bird and non-bird classes, respec-

tively. Warblr [22] is UK based bird sound crowd sourcing

research project. A small subset of Warblr having 6, 045 bird-

activity and 1, 955 non-bird recordings was provided. This data

is collected in various environments and also exhibits different

background sounds.

B. Experimental Setup

Audio signal is processed on a short time frame basis, where

framing is achieved by applying a 20 ms long non-overlapping

Hamming window. No frame overlap is considered so as to

minimize the number of frames for processing. For each frame,

we extracted 39 Mel frequency cepstral coefficients (MFCCs)

along with delta and delta-delta coefficients (using VOICE-

BOX [23]), which are further preprocessed with CMVN and

feature warping techniques. In order to select a suitable subset,

we used the Fast Exemplar Selection (FES) algorithm as

proposed in [20], which extracts a linearly independent subset

of signals which captures the full range of the training dataset.

AA is performed using fast implementations provided by

SPAMS toolbox [8], where the tolerance of 10−3 is used

as the stopping criteria. For SVM training, Libsvm toolbox

[24] is used. Further, to show the generalization ability of the

proposed method in different recording conditions, training

and testing is done on different datasets.

The main emphasis of this work is to use minimum possible

training data without suffering in classification accuracy. This

is also necessary as the complexity of working with the kernel

matrix is a function of the number of training signals, instead

of the dimensionality of the input signal. Hence, archetypes

are learned using 100 audio signals from the bird class. The

optimal number of archetypes is chosen by performing testing

on validation data. SVM is trained with SCSK matrix build

using only 200 audio signals each from both bird and non-bird

classes. Hence, in total approximately 6.25% of data is used

for training.

C. Results

In this subsection, we evaluate the performance of the pro-

posed method for the BAD task on two datasets. In addition,

the performance of the proposed method is also compared

with existing classification methods. Initially, the efficiency of

the proposed framework is evaluated, where either Warblr or

Freefield dataset is used for training/testing and vice versa.

Firstly, the experimentation is done on a small validation
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TABLE I
COMPARISON OF CLASSIFICATION ACCURACIES FOR DIFFERENT

TRAINING AND TESTING DATASETS AVERAGED OVER 10 TRIALS.
SCSKFES REFERS TO SCSK WITH FES.

Method Training Testing Accuracy

SCSK
Warblr Freefield 83.5

Freefield Warblr 75.4

SCSKFES

Warblr Freefield 85.2

Freefield Warblr 77.3

TABLE II
COMPARISON OF CLASSIFICATION ACCURACIES FOR DIFFERENT METHODS

AVERAGED OVER 10 TRIALS. SCSKFES REFERS TO SCSK WITH FES.

Classifier Training Testing Accuracy

SVM with SCSKFES

Warblr Freefield

85.2

Linear SVM 82.13

GMM 75.3

RandomForest 79.35

dataset containing 2000 audio signals from testing dataset.

The best accuracy was obtained for 128 archetypes. Following

this, experiments are performed on the whole testing dataset.

The classification accuracy (% of correctly classified signals)

over 10 trials is reported in Table I. The results support the

claim that the proposed framework is capable of distinguishing

between audio signals having bird and non-bird activity. As

discussed earlier, this distinction is due to the difference in

weight vector of archetypes (as a result of the underlying

sparseness property of AA), computed for both the classes.

We observed that higher accuracy is obtained when dictionary

is trained from Warblr dataset, which is due to the fact that

Warblr dataset is recorded in more cleaner environment as

compared to Freefield dataset.

The classification performance of the proposed method is

compared with three other methods: (a) a random forest

classifier with 128 trees, (b) a GMM classifier with 8 mixtures,

and (c) a SVM using a linear kernel. All the classifiers are

trained on fixed length Φ representations. The number of trees

and number of mixtures in the random forest classifier and the

GMM classifier, respectively are obtained empirically. For a

fair comparison, all the classifiers are trained with same train-

ing signals as in case of previous experiment, and the results

are reported in Table II. It can be observed that the proposed

kernel with SVM classifier has much better performance than

other classifiers, which are unable to generalize well on small

amount of training data.

V. SUMMARY

In this work, we proposed an archetypal analysis (AA)

based sparse convex sequence kernel (SCSK) for the bird

activity detection (BAD) task. AA decompose the data as

convex combinations of extremal point lying on the convex

hull of the data. Hence it characterizes the extremal of the data,

and leads to a compact representation. AA results in convex

representations, and hence coefficients of the weight vector

represent contribution of each learned archetypes. In this work,

AA is performed using audio signals corresponding to bird

class only. Hence the weight vector obtained with respect to

these archetypes is sparse and dense for bird class and non-bird

class, respectively. These weight vectors are used to create a

kernel matrix, which is further used in SVM for classification.

In order to reduce the computational complexity while building

kernel matrix, a subset of training data is selected using fast

exemplar selection method. The experimental results on two

datasets show that the proposed framework is effective in bird

activity detection tasks.

REFERENCES

[1] “BAD challenge,” http://machine-listening.eecs.qmul.ac.uk/bird-audio-
detection-challenge/, Accessed: 2017-2-1.

[2] Mario Lasseck, “Towards automatic large-scale identification of birds
in audio recordings,” in Experimental IR Meets Multilinguality, Mul-

timodality, and Interaction: 6th International Conference of the CLEF

Association, CLEF’15, Toulouse, France, September 8-11, 2015, Pro-

ceedings, Cham, 2015, pp. 364–375, Springer International Publishing.
[3] Karl-Heinz Frommolt and Klaus-Henry Tauchert, “Applying bioacoustic

methods for long-term monitoring of a nocturnal wetland bird,” Eco-

logical Informatics, vol. 21, pp. 4 – 12, 2014, Ecological Acoustics.
[4] Iosif Mporas, Todor Ganchev, Otilia Kocsis, Nikos Fakotakis, Olaf Jahn,

and Klaus Riede, “Integration of temporal contextual information for
robust acoustic recognition of bird species from real-field data,” IJISA,
vol. 5, no. 7, pp. 9–15, 2013.

[5] D. Stowell and M. D. Plumbley, “Automatic large-scale classification
of bird sounds is strongly improved by unsupervised feature learning,”
PeerJ 2:e488, 2014.

[6] Miguel A. Acevedo, Carlos J. Corrada-Bravo, Hctor Corrada-Bravo,
Luis J. Villanueva-Rivera, and T. Mitchell Aide, “Automated classifica-
tion of bird and amphibian calls using machine learning: A comparison
of methods,” Ecological Informatics, vol. 4, no. 4, pp. 206 – 214, 2009.

[7] Morten Mrup and Lars Kai Hansen, “Archetypal analysis for machine
learning and data mining,” Neurocomputing, vol. 80, pp. 54 – 63, March
2012, Special Issue on Machine Learning for Signal Processing 2010.

[8] Yuansi Chen, Julien Mairal, and Zaid Harchaoui, “Fast and robust
archetypal analysis for representation learning,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Washington, DC,
USA, June 2014, pp. 1478–1485, IEEE Computer Society.

[9] D. Chakraborty, P. Mukker, P. Rajan, and A. D. Dileep, “Bird call
identification using dynamic kernel based support vector machines and
deep neural networks,” in IEEE International Conference on Machine

Learning and Applications (ICMLA), December 2016, pp. 280–285.
[10] N. V. Prasad and S. Umesh, “Improved cepstral mean and variance

normalization using bayesian framework,” in IEEE Workshop on

Automatic Speech Recognition and Understanding, December 2013, pp.
156–161.

[11] B. Xiang, U. V. Chaudhari, J. Navrátil, G. N. Ramaswamy, and R. A.
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