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Abstract—In this paper, we investigate the recovery of range
and spectral profiles associated with remote three-dimensional
scenes sensed via single-photon multispectral Lidar (MSL). We
consider different spatial/spectral sampling strategies and com-
pare their performance for similar overall numbers of detected
photons. For a regular spatial grid, the first strategy consists
of sampling all the spatial locations of the grid for each of
the wavelengths. Conversely, the three other strategies consist,
for each spatial location, of acquiring a reduced number of
wavelengths, chosen randomly or in a deterministic manner.
We propose a fully automated computational method, adapted
for the different sampling strategies in order to recover the
target range profile, as well as the reflectivity profiles associated
with the different wavelengths. The performance of the four
sampling strategies is illustrated using a single photon MSL
system with four wavelengths. The results presented demonstrate
that although the first strategy usually provides more accurate
results, the subsampling strategies do not exhibit a significant
performance degradation, particularly for extremely photon-
starved data (down to one photon per pixel on average).

I. INTRODUCTION

In recent years, single-photon timing has emerged as a
candidate technology for high-resolution three-dimensional
profiling [1], and the performance of the approach has been
demonstrated in a number of field trials [2]-[4]. Time-
correlated single-photon counting (TCSPC) is a statistical
sampling technique which records the arrival time of detected
photons with respect to the emitted laser pulse or absolute
time. In addition to the high timing resolution of such systems
(some picoseconds), the high sensitivity of single-photon de-
tectors can mean detection over longer ranges and/or the use
of lower power laser sources. However, a potential drawback
of single photon counting is that the integration times required
for accurate depth measurement can be too long for rapid depth
profiling. Even with single-detector scanning systems, signif-
icant reductions in acquisition time have been demonstrated
by application of advanced computational imaging approaches,
such as first-photon imaging [5] or single-photon data analysis
in the extremely photon-starved regime [6], [7], which have
allowed depth images to be reconstructed with very few photon
returns.

Single-photon approaches have been used for demonstra-
tions of multispectral depth imaging for target identification
[8], [9], quantification [10] and for the measurement of the
physiological parameters of foliage [11]. In most cases, range
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and spectral information was assumed to be available for
each wavelength. Recently, the implementation of mosaic
filters, or multispectral filter arrays, to produce simultaneous
multispectral images on a single frame read-out has been
pursued by several groups [12], [13]. In such cases, a single
wavelength (out of the L wavelengths) is acquired at each
spatial location and an interpolation scheme is thus required
to recover the L full intensity profiles. Moreover, subsampling
strategies are clearly interesting for scanning systems where
the acquisition time is proportional to the number of pixels
scanned.

In this work, we propose a Bayesian computational method
to compare the performance of sampling strategies based on
subsampled MSL data to the classical full scan approach.
We also consider the case where the sampling patterns are
independent, i.e. where multiple wavelengths can be acquired
at some spatial locations while other locations are not sensed.
Adopting a Bayesian approach, prior distributions are assigned
to the unknown parameters involved in the observation model.
In particular, Markov random fields (MRFs) are used to
capture the intrinsic spatial correlation affecting the range
and intensity profiles of natural scenes. Markov chain Monte
Carlo (MCMC) methods are then used to sample posterior
distributions of interest and estimate the unknown depth and
reflectivity profiles. Moreover, the resulting estimation strategy
is able to automatically adjust the spatial regularisation param-
eters which are usually difficult to adjust without ground truth
depth and intensity profiles, in particular when considering
extremely sparse and uncertain measurements.

The remainder in this paper is organised as follows. Section
II introduces the observation model associated with MSL
returns for single-layered objects. Section III presents the
Bayesian model associated with the range and reflectivity
estimation problem considered and Section IV describes the
MCMC methods used to sample from the posterior distri-
butions of interest and subsequently approximate appropriate
Bayesian estimators. Results of experiments conducted on real
MSL data are discussed in Section V and conclusions are
reported in Section VI

II. OBSERVATION MODEL

We consider a 4-D array Y of Lidar waveforms of di-
mension Nygw X Neot X L x T, where N, and N, stands
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for the number of rows and columns of the regular spatial
sampling grid (in the transverse plane), L is the total number of
spectral bands or wavelengths and 7" is the number of temporal
(corresponding to range) bins. Let y;;, = [Y], ;.
Wi, ,th’T]T be the Lidar waveform obtained in the
pixel (¢,j) using the ¢th wavelength. The element y; ;¢
is the photon count within the ¢th bin of the /th spectral
band (assuming that a waveform is actually observed for this
wavelength and spatial location). For each pixel, the set of
observed wavelengths in denoted £; ;. Pixels/wavelengths that
are not observed satisfy y;;0: = 0,Vt. In this work, we
assume that for each pixel, the detected photons result from
two main contributions: 1) from direct path reflections of the
photons originally emitted by the laser sources onto the surface
of the object of interest or 2) dark photon counts and ambient
illumination (assumed to be stationary in time but potentially
non-stationary spatially). Moreover, we assume that the laser
beam, for each pixel, encounters a single surface which is
assumed to be locally orthogonal to the beam direction. This
is typically the case for short to mid-range (up to dozens
of metres) depth imaging where the divergence of the laser
source(s) can be neglected. Let d; ; be the position of an object
surface at a given range from the sensor, whose mean spectral
signature is denoted as A; ; = [A; j1,- .., Aij,.]T. According
to [6], [14], each photon count ¥; ; ¢, is assumed to be drawn
from the following Poisson distribution

YigotlNigestig ~ P Nijege(t —ti;) +bije) (D

where g¢(-) is the instrumental response of the system, which
consists of a peak whose shape differs between wavelength
channels (see [9] for examples of impulse responses). In
Eq. (1), ¢;; is the characteristic time-of-flight of photons
emitted by a pulsed laser source and reaching the detector
after being reflected by a target at range d; ; (d;; and t;;
are linearly related in free-space propagation). Moreover, the
instrumental responses {g¢(-)} are assumed to be known, as
occurs when they can be accurately estimated during imaging
system calibration. {b; ; ¢} represent background illumination
levels. It is important to stress that in this work, we consider
applications where the observed objects consist of a single
visible surface per pixel. We do not consider cases where the
photons can penetrate through objects or be reflected from
multiple surfaces. This assumption allows the estimation of
the target spectral responses to be reduced to a two spatial
dimensions problem. Thus, the problem addressed here is to
estimate the range of the targets (for all the image pixels)
and estimate the target spectral responses. For brevity, we
assume that the background levels are known (and negligible
in Section V). In practice, these parameters can often be esti-
mated from calibration measurements using a pre-processing
step similar to the reflectivity estimation strategy as discussed
in Section IV-A.
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III. BAYESIAN MODEL
A. Likelihood

Using the classical assumption that the detected photon
counts, conditioned on their mean in all channels, are con-
ditionally independent, the joint likelihood of Y can be
expressed as
f(Y|A,B,T)

= H H I (Wi g.e63 Moot —tij) +bize),  (2)

1,5 tLEL; ;

where A = {A;;}, ;. B ={b;;}, ; and T is a matrix gath-
ering the target ranges. Note that in Eq. (2), fp(; A) denotes
the probability mass function of the Poisson distribution with
mean .

B. Prior distributions

Each target position is a discrete variable defined on
T = {tmin,s--->tmaz}> such that 1 < tin < tmae < 7.
In this paper we set (tmin,tmaz) = (301,77 — 300) (for
reasons discussed later) and the temporal resolution of the
grid is set to the resolution of the single-photon detection
(i.e., 2 picoseconds (ps) in Section V). As in [6], to ac-
count for the spatial correlations between the neighbouring
pixels, we propose to use a Markov random field (MRF)
as a prior distribution for ¢; ; given its neighbours Ty j,
where V(i,7) is the neighbourhood of the pixel (7,7) and
Ty = {5} .j)#a,5)- More precisely, we propose
the following discrete MRF f(T|e) = G(e)~! exp [—ep(T)],
where € > 0 is a parameter tuning the amount of correlation
between ranges in adjacent pixels, G(¢) is a normalisation
constant and where ¢(T) = Zz] Z(i/7jl)ev(i7j) tij — tir jr|.
In a convex optimisation framemork, this MRF corresponds
to a total-variation (TV) regularisation [15], [16] promoting
piecewise constant depth image. Moreover, the higher the
value of €, the more correlated the ranges of neighbouring
pixels. Here, a four-pixel structure is used to define the
neighbourhood structure of the all the MRFs considered.

In a similar fashion to the depth parameters, we use TV-
based priors for the target spectral signatures in A. Precisely,
we assume that the elements of A take value in arbitrarily
defined finite sets of discrete values (typically (0, 1) for the
target reflectivity) and define the following prior models

F(Aelve) = G(ve) ' exp [—vep(Ar)] 3)

where A, stands for the target reflectivities associated with
the ¢th spectral channel. The prior models in (3) rely on L
regularisation parameters {~,} which control the amount of
spatial correlation between reflectivities of adjacent pixels.
This strategy allows us to account for spatial correlations
between reflectivity parameters in order to improve estimation
performance. Moreover, as will be discussed in the next
paragraph, the proposed algorithm is able to automatically
adjust {~,} and thus estimate the amount a spatial correlation
between pixels.
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IV. ESTIMATION STRATEGY

Simultaneously estimating A and T from the observed
waveforms Y is challenging mainly due to the multimodal
nature of the likelihood f(Y]|A,B,T). In a similar fashion
to [5], [10], [17], we simplify the problem by estimating
sequentially A and T, using weak assumptions which can
often be satisfied in practice. The two estimation steps are
detailed in what follows.

A. Target reflectivity estimation

The first step of the proposed method consists of estimating
the target reflectivity within each pixel and for each spectral
band, given known or previously estimated background levels.
This step is generally difficult because the target ranges are
unknown. Nevertheless, if we consider ¥; j, = Zthl Yi jb,ts
i.e., the sum of the photons detected (within a single spectral
band) in a given observed pixel, Eq. (2) leads to

UijelNigestigbige ~ P (Nijegije + Thije), 4

where §; j, = Zthl ge(t — t; ;) is the (discretised) integral
of the instrumental response associated with an object with
unitary reflectivity and located at ¢; ; from the detector. In
this work, we assume that g; j» = go, Vt; ; € T, i.e., that the
integral of the instrumental response does not depend on the
distance of the target. This is typically the case in practice
when the admissible set of target ranges are far enough from
the extreme bins of the recorded histograms, i.e. when the
peaks associated with target returns are not truncated. For
instance in Section V, the support of the impulse responses are
smaller than 300 bins, what motivated the range constraints in
Section III-B. In such cases, Eq. (4) yields

i gl Nige> Ges bige ~ P (NijeGe + Ty jg) &)

which does not depend on the distance of the target. We can
thus define the following posterior distribution for A,
f(AY, B, )

o fAely) [T TT FigielXijes e bije), (6)

1,5 LEL; ;

which can be exploited to estimate Ay, with Y = {7 (}.
Here we resort to an adaptive Markov chain Monte Carlo
(MCMC) similar to that proposed in [6], [18] to compute the
marginal maximum a posteriori (MMAP) estimators of the
target intensities given by

Xije = gnaxf(/\z‘,j,él?a B,9¢), V(i,5.0) (7)
1,7,€

where 4y approximates the marginal maximum likelihood
estimator of ~,. Precisely, for each wavelength, a Gibbs
sampler is used to sample according to f(A|Y,B,~,) and
the regularization parameter 7, is updated during the early
iterations (burn-in) period of the sampler (the interested
reader is invited to consult [6], [18] for further details about
the sampling strategy adopted here). Here we resort to a
simulation-based algorithm here in order to automatically ad-
just the regularisation parameters v,. However, it is important
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to mention that f(A[Y,B,~,) is log-concave and that A
could also be inferred via standard maximum a posteriori
(MAP) estimation using state-of-the-art convex optimisation
techniques (provided that v = [y, ...,7z] is properly tuned).
A similar estimation procedure can be used to estimate the L
full background profiles from (potentially sparsely sampled)
MSL waveforms that do not contain photons originally emitted
by the laser. Such waveforms can be obtained by switching
off the laser sources or by considering parts of the longer
waveforms which do not contain target returns. Using TV-
based priors for the background levels, it is possible to estimate
B via MMAP estimation while adjusting automatically the
spatial regularisation parameters. Due to space constraints, this
step is however not further detailed in this paper.

B. Target range estimation

The second step of the proposed method consists of re-
covering the target ranges, given that the background levels
and target reflectivities are known (or have been previously
estimated). In contrast to the distributions in 6 considered
to estimate the target intensities, the conditional distribution
f(T|IY,A,B,¢) is generally highly multimodal and thus
cannot be maximised (w.r.t. T) efficiently using convex op-
timisation tools. Again, we use an efficient MCMC method
similar to that used in [6], [18] to estimate simultaneously T
(via MMAP estimation) and e.

The resulting algorithm, which estimate sequentially A and
T, together with the associated regularisation parameters is
thus fully automated and does not require practitioners to
adjusted critical parameters. In addition to its computational
efficiency (highly parallelizable) and robustness (w.r.t. conver-
gence issues), the proposed method can also be used to provide
a posteriori measures of uncertainty associated with each
estimation step. The interested reader is invited to consult [10]
for examples of use of such measures for ranging assessment.

V. RESULTS

(b)

Fig. 1. RGB photographs of the front view of the first (a) and second (b)
target (approximately 45 X 45 mm) which were located at a stand-off distance
of 1.8 m from the transceiver unit. The depth variations are of approximately
30 mm (Target 1) and 20 mm (Target 2).

In this section, we evaluate the performance of the al-
gorithm proposed in Section IV for ranging and reflectivity
estimation from multispectral Lidar data using data acquired
by an imaging system with L = 4 wavelengths, similar to
that detailed in [9]. We propose comparing the performance
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of 4 different sampling strategies to analyze the depth and
reflectivity profiles of two scenes (Fig. 1). The first target is
a lego figurine place in front of a dark backboard (Fig. 1 (a))
while the second target (Fig. 1 (b)) is composed of different
objects made of Fimo clay fixed on tree leaves and mounted
onto a dark backboard. The two targets were placed at a
distance of 1.8 m from the imaging system. The measurements
were performed indoor to control ambient illumination. To
investigate the effect of the sampling strategy on the recovered
depths and reflectivities, we consider measurements performed
under dark conditions, with a negligible contribution from
background ambient illuminations. The scenes were scanned
using a regular spatial grid of 200 x 200 pixels using two
different sets of wavelengths. For the first target, we used
473,532,589 and 640nm, which corresponds to red, green,
yellow and blue colours. For the second target, we selected
L = 4 regularly spaced wavelengths (500,580,660 and
740nm) out of the 33 wavelengths considered in [9]. The
histograms consist of 7" = 3000 bins of 2 ps, which represents
a depth resolution of 300um per bin. The instrumental impulse
responses g¢(-) were estimated from preliminary experiments
by analyzing the distribution of photons reflected onto a
commercially available Lambertian scatterer. The ground truth
depths and reflectivity parameters have been obtained from
complete 200 x 200 pixels scans (also acquired with negligible
ambient illumination) for each wavelength and long per-pixel
acquisition times to reduce uncertainty cause by the Poisson
noise statistics. We consider the following sampling strategies

1) Scenario #1: full scans

2) Scenario #2: regular subsampling, without overlap
3) Scenario #3: random subsampling, without overlap
4) Scenario #4: random subsampling, with overlap.

For Scenarios 2 to 4, 25% of the pixels are sensed for each
wavelength. This ratio corresponds to a gain of 75% in terms
of acquisition time if a scanning system processing the four
wavelengths sequentially was used. Scenario 2 is obtained by
defining a four-colour checker-board of size 200 x 200. For
the Scenario 3, for each pixel, the observed wavelength is
randomly chosen by drawing uniformly in {1,2, 3,4}, while
L = 4 independent random masks are created for the last
scenario. In that case, some pixels are observed through several
wavelengths while others are not sensed. For each target, the
power of the laser source and the acquisition times were
adjusted from preliminary runs so that similar photon counts
are returned by the target for the four wavelengths and so
that the four scenarios lead similar per-pixel photons counts
on average. For instance, for 10 detected photons per pixel
on average, Scenario #1 corresponds to 4 X 2.5 photons on
average, while Scenarios #2 and #3 correspond to 1 x 10
photons on average.

The proposed algorithm has been applied with Nyic = 5000
sampler iterations for each step, including N,; = 2000 burn-in
iterations, which corresponds to a processing time of about 30
minutes for each scene, for a Matlab R2014a implementation
on a i7-3.0 GHz desktop computer (16GB RAM). The compu-
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tational cost of the four scenarios are similar as the likelihood
contributions to be computed for each observed data can be
computed only once at the first iteration for each admissible
intensity and range (constrained to be a fixed grids).

Target 1 Target 2
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Fig. 2. Mean RAEs obtained for Target 1 (left) and Target 2 (right) using
the different scenarios as a function of the average per-pixel photon counts.
The error bars represent the + one standard deviation intervals.

The performance of the four imaging strategies in terms of
reflectivity estimation are compared using the reflectivity ab-
solute error (RAE) defined by RAE; ; = ZeL:1 |)\i’j’g—5\i’j,g|,
where A; ;¢ (resp. 5\” ¢) is the actual (resp. estimated) target
reflectivity in the /th band of the pixel (i, 7). Fig. 2 compares
the mean RAEs (+ standard deviation) obtained with the four
methods as the average number of detected photons decreases.
The performance of all methods degrades (higher mean RAEs
and larger variances) as the data quality degrades. Yet, with
almost 1 photon per pixel, the mean RAE of all method
remains below 0.1 for the first target and 0.02 for the second
target. Note that smaller RAEs are generally obtained for the
second target which consists of large homogeneous reflectivity
regions for which the TV-based regularisation is particularly
well adapted. Moreover, for higher detected photon counts, the
full scan approach (red curves in Fig. 2) outperforms the other
strategies which suffers from the reduced number of observed
pixels (25%) for each wavelength, in particular for the first
target which includes finer spectral features.

Similarly, the ranging performance of the sampling strate-
gies is measured using the depth AE (DAE) defined by
DAE;; = |ti; — tAm-|, where ¢; ; (resp. fi7j) is the actual
(resp. estimated) range associated with the target in the pixel
(,7). The mean DAEs obtained using the four scenarios are
depicted in Fig. 3. With more than 10? photons per pixel on
average, the mean DAEs obtained are smaller than 500um for
all methods and for the two targets. In contrast to the estimated
intensities, the range profiles obtained by the the four methods
with larger photon counts are relatively similar. Indeed, in such
cases the overall number of detected photons in each pixel is
large enough to provide sufficiently accurate range estimates,
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even if a single band is observed. The full scan approach is
generally more robust since all the wavelengths are observed
in each pixel. Using a reduced number of wavelengths per
pixel generally increases the probability of weak target returns
while the full scan approach only requires at least one of
the L reflectivity parameters to be high in order to obtain an
accurate depth estimate. Consequently, spreading the energy in
each pixel across multiple wavelengths generally improves the
ranging performance. Note that the DAEs associated with the
second target are generally smaller than those obtained with
the first target due to 1) smaller local depth variations (range
profile of Target 2 locally constant) and 2) the peak of the
instrumental responses g;(-) which broadens as the wavelength
decreases, leading to less accurate depth estimates (see [9] for
examples of impulse responses associated with the imaging
system considered).

Target 1 Target 2
12 T T 3.5 T T

Scenario #1| g
Scenario #2 | |
Scenario #3
Scenario #4

8r 251

10 \ \ 2 \ .
102 10’ 102 10"
Average per pixel photon count Average per pixel photon count

Fig. 3. Mean DAEs obtained for Target 1 (left) and Target 2 (right) using
the different scenarios as a function of the average per-pixel photon counts.
The error bars represent the + one standard deviation intervals.

VI. CONCLUSION

In this paper, we compared the ranging and reflectivity
estimation performance of several sampling strategies for 3D
scenes analysis using MSL waveforms. The results obtained
show that the lack of spectral information induced by the
acquisition of a reduced number of wavelengths per pixel
can be mitigated to some extent by incorporating spatial
correlation in particular when the overall number of detected
photons reduces. For higher photon counts, the full scan
approach generally performs better than the other approaches
using the TV-based spatial regularisations used in this work.
However, this observation should be mitigated by the fact the
performance of sparse sampling approaches could be further
improved using other spatial regularisations. Moreover, the
performance degradation induced by such approaches reduces
in the presence of ambient illumination sources (results not
presented here due to space constraints), which introduces
more uncertainty than that the lack of observed pixels.
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