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Abstract—In wireless sensor networks, anchor positions play
an important role for accurate localization. For mobile anchor
(MA) based scenarios, both the efficiency of the path planning
algorithm and the accuracy of the localization mechanism are
critical for the best performance. In this work, an adaptive
path planning algorithm is proposed based on Gauss-Markov
mobility model, while the sensors are localized using alternating
minimization approach. Path planning, which combines the
velocity adjustment, the perpendicular bisector and the virtual
repulsive strategies, is improved by developing virtual attractive
force strategy. The surveillance area is divided into grids and
a virtual attractive force is applied to the MA in sparsely
and densely populated areas. For localization, the non-convex
optimization problem is converted into a bi-convex form and
solved by alternating minimization algorithm leading to a shorter
MA path. The simulation results show that introducing the virtual
attractive strategy increases the path planning accuracy and
cover more surveillance region using less energy. Furthermore,
compared to the linear localization method, the localization
accuracy increases when the alternating minimization is used.

Index Terms—Dynamic path planning, mobility model, mobile-
anchor, sensor network localization, alternating minimization.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been used in mil-
itary surveillance, fire detection, target tracking and wireless
security [1]. Sensor localization problem contains large num-
ber of unknown sensors randomly distributed in a region [2],
[3]. WSN scenarios can be classified as range-free and range-
based schemes. While range-free algorithms use connectivity
between sensors and anchors, range-based algorithms use
node-to-node distances or angles to localize sensors [4]. In
this work, range-based scenario is investigated and TOA mea-
surements are used for localization. In a WSN, anchor node
positions play an important role for improving the localization
accuracy. However, increasing the number of costly anchors
also increases the cost of the localization process. Moreover, in
static anchor scenarios, all anchor nodes become useless after
the localization process. Hence, using a mobile anchor with
the ability to broadcast its position decreases the cost of the
localization [5]. In this work, a path planning algorithm based
on Gauss-Markov (GM) mobility is proposed. In addition to
the velocity adjustment, the perpendicular bisector and the
virtual repulsive force strategies in [5], a virtual attractive force
is defined in this paper to control the velocity and the direction
of the mobile anchor. Besides, a sensor can be localized in
2-D, if there are at least three neighboring anchors in its
communication range [6]. When there is no guarantee for
three or more neighboring anchors, localization problem can
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be solved by the proposed optimization algorithm effectively.
In this work, limitations of the path planning algorithm in [5]
are eliminated by proposing a virtual attractive force strategy
and a novel optimization method for the localization.
II. SYSTEM MODEL

Consider N stationary sensors which are randomly dis-
tributed over an L x L surveillance area and a mobile anchor
(MA) carrying a GPS receiver. The node positions created by
the MA are represented by the vectors {aj,...,ay },a, € R?,
and the sensor positions by the vectors {xi,...,Xy},X; € R2.
While (z;,y;) components of sensor coordinates x; are un-
known, the mobile anchor receives its position with GPS at
each move. All sensors and the MA have communication
ranges with the same radius R. The main problem is to esti-
mate unknown sensor positions using node-to-node distances
between sensors and the anchor. In this scenario, the MA
follows a path and creates anchor nodes in time. When it
enters the communication range of a sensor, the MA sends its
position information to the sensor and receives an acknowl-
edgment immediately. After enough anchor information is sent
to the sensor, it is localized and the coordinates are transmitted
with the acknowledgment packet. In part III and IV, the path
planning algorithm and the localization mechanism for sensor
coordinate estimation are explained respectively.

III. PATH PLANNING ALGORITHM
In this work, an adaptive path planning algorithm based on
the GM mobility model is proposed. As in [5], the model can
be described by
Pn = QPp—1 + (1 - O‘)Z_)+ V 1- aszn_l (1)
dy =ad, 1+ (1 —a)d+v1-a2d,,_, )
where p,, and d,, are the velocity and the direction of the
MA at time n; a , where 0 < o < 1, is the parameter which
is used to vary randomness; p and d are constant mean values
of the velocity and the direction as n — 00; p,,, , and dg,,
are independent, zero mean Gaussian random variables. The
next position of the MA is decided by the current location,
velocity and direction. The position of the mobile anchor at
time n is described by
LTp = Tp—1 +pn—1605(dn—1) 3
Yn = Yn—1 +pn—13in(dn—1) (4)
where x,, and y,, are the MA coordinates at time n; d,,_1
is the direction of the MA at time n — 1.
In the proposed path planning algorithm, the velocity ad-
justment, the perpendicular bisector, the virtual repulsive force
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and the virtual attractive force strategies are used to control
the velocity and direction of the mobile anchor.

A. Velocity Adjustment Strategy
(1) can be expressed in terms of the 1n1t1a1 velocity pg as

n=0a"py+ (1 —a") p+v1—oﬂ§:a”’1m”1<$

Accordmg to (5), a™ becomes very Sifall in time. Hence,
pp, and d,, are found in the neighboring range of p and d [5].
Instead of moving with the mean pace, the MA velocity is
adjusted according to the acknowledgments received from the
sensors. Two cases are explained in the following sections for
the velocity adjustment.

1) In the Communication Range:

Receiving an acknowledgment from a sensor, the MA de-
creases its velocity to stay in the communication range. Then it
creates enough anchor positions for locating the sensor. Mean
velocity p in (1) is set to P,,.;n which is the minimum mean
value of the MA pace. Then arranging (1), expression (6) is
obtained as in [5],

Pn = Pn-1*+ (1 - a)(Pmm _pn—l) +vV1- 04217;871,,1

As in (6), the MA velocity decreases when Pin = 0 at
time n.

2) Outside the Communication Range:
Receiving no acknowledgments, the MA increases its velocity
to cover more surveillance region. Similar to (6), p is set
to Py, and (1) is modified. The resulting expression (7) is

obtained as in [5],
Pn = Pn-1*+ (]- - a)(pmaac - pnfl) +v1- 012]%”,1 @)

B. Perpendicular Bisector Strategy

When the MA enters the communication range of a sensor,
it moves within the range until a predefined ¢ number of non-
collinear anchor is created. When the sensor is localized, the
MA leaves the range.

In Figure 1, the bisector strategy is shown. The black circle
is the sensor with the communication range R and the black
triangles are the MA positions in time. Blue triangles are the
possible MA coordinates at n + 1. Solid lines are the paths
followed by the MA until current time n; the blue line is the
perpendicular bisector line between two consecutive anchor
positions and the dashed line is the future path.

an+1 ‘

Fig. 1: The perpendicular bisector strategy.

In Figure 1, at n and n — 1, two consecutive acknowl-
edgments are received from the same sensor. The next MA
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position is determined by the perpendicular bisector line
shown by dots. 4,4, positions are two symmetric solutions
for bisection and calculated by,

B et -1 + /4 ntln 1<a -,y_anfl,y)

~ dp41, dn,n-1

Bp=| "= 2 2 (8)
an+1«y

an,y + an—l,y ntln an—l,z —dng
T Jagete YT

where a,,4; is the solution for the possible MA position at
n+1; 8,41, and 4,1, are x and y components of the vector
Ap41; ap . and a, , are the components of the MA coordinate
at time n; dy41,, is the distance between n + 15 and nth
anchor positions. As in (8), 8,41, and 8,11, coordinates
have two symmetric solutions with respect to the line through
a, and a,,_1. If the next MA position is chosen to be one of
the 4,41 solutions and no acknowledgment is received, the
MA moves to the symmetric position at time n + 2.

If the MA leaves the range at n, the bisector is again applied
to find n + 1 position using the previous acknowledgment.
When the MA is in the range of more than one sensor, a
similar process is followed. For all cases, the perpendicular
bisector strategy is repeated until the predefined £ number of
anchor positions are traversed.

C. Virtual Repulsive Force Strategy

In [5], the relation between the virtual repulsive force and
the velocity is expressed by
Frp = m- ©
where Frp is the virtual repulsive force; m(kg) is the
anchor mass; p denotes the velocity vector of the MA and At
is the sampling time interval. The virtual repulsive strategy is
examined for two cases.
1) Outside the Surveillance Area:
After the MA leaves the surveillance region, a virtual repul-
sive force is applied to the anchor from the outside of the
surveillance area. Hence, the MA returns to the region with
the same velocity that it leaves the region at time n — 1. The
returning velocity and direction of the MA is denoted by
Preturning = Pn—1, d, (10)
where preturning 18 the returning velocity; d,, is the direc-
tion vector in time n and Dgp is the direction determined by
the virtual repulsive force of the outside region [5].
2) Inside the Surveillance Area:
Virtual repulsive force is defined as follows
O, UMA,i > R (11)
Frp, upa; < R
where F is the virtual force; uar4,; is the distance between
the MA and " sensor [5]. If the MA enters the range of a
localized sensor, the mobile anchor is repelled with a virtual
repulsive force by the sensor. The choice for Frp value is

discussed in the simulations.
D. Virtual Attractive Force Strategy

= Dgrp

F =

In [5], Zhong et al. combines the velocity adjustment, the
perpendicular bisector and the virtual repulsive force strategies
with the GM mobility model. In this work, a virtual attractive
force strategy is introduced. The proposed method is divided
into two stages as follows.
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1) Sparsely Populated Region:

In [5], when no acknowledgment is received in a sparsely
populated area, the MA velocity is increased. However, there is
no control over the direction. As stated in (2), the MA direction
is a random variable according to the GM mobility model. This
results inefficient path generation over the direction vector in
the areas with low sensor density. Since there is no mechanism
in [5] for preventing the MA staying in the same region, there
is an accumulation of useless anchor positions. In this paper,
the virtual attractive force strategy is proposed to improve the
path generation efficiency and localization.

In Figure 2, a path planning example is given. In the
proposed strategy, the surveillance region is divided into grids
of 2R x 2R as in Figure 2. The divided surveillance region is
represented by a matrix H whose indexes are on the left and
top positions of the grid structure. The matrix elements are the
number of anchor positions in the corresponding grid and they
are changed in time. If the current index exceeds a predefined
threshold value A, a virtual attractive force is applied to the
mobile anchor. The grid applying the attractive force is chosen
randomly among the closest minimum indexed grids.

1 2 3 4 5 6
1| © o o
d
a | a—j—] f
2 a1 [ ®
1 g
h N
k FN
3 | O unknown nopes i A
o))
. LOCALIZED NODES
*| A Ancrornooes | o [e)

Fig. 2: Path planning algorithm.

In Figure 2, the MA moves starting from point a. After
the first acknowledgment at d, the MA slows down moving
to e. Then, anchor position f is generated using bisection.
After the sensor is localized, the MA is repelled to g by the
virtual repulsive force. Leaving the region at h, the MA is
again repelled to i and continues to move randomly. When
no acknowledgment is received at the current MA position,
the corresponding index of H is checked. If the current index
exceeds A, a virtual attractive force is applied to the MA by the
closest minimum indexed grids. For the Figure 2, H is given
in (12) and A = 4. The MA generates 4 anchor positions in
the grid which corresponds to Hy 4. Hence, virtual attractive
force is applied to the MA by the closest minimum valued grid
of H corresponding to H; 4 and H3 4. Then the MA moves to

p. 000000
01 1 4 3 1

H=1069001 21 a2
00 0 0 0O

The virtual attractive force and the MA direction are defined

M Ay H, ;<)

5 dn = DAT
M A (H, ;>

by,
F-d¥ (13)
Fur,
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where Fa7 is the virtual attractive force applied;
MA, g, ;<) is the case which the MA is in a grid
with an index below A at time n; M A, (g, ;> is the case
which the MA is in a grid with an element exceeding the
threshold value at time n. d,, is the direction vector at time n
and D 4 is the direction to the closest minimum valued grid
of H.

2) Densely Populated Region:

When the MA enters the communication range of localized
sensors, virtual repulsive force is applied to the MA by these
sensors. However, if the MA is surrounded by localized sen-
sors, it cannot cross them due to their virtual repulsive forces
[5]. Zhong et al. proposes to remove the virtual repulsive force
once, when the MA enters the range of a located sensor more
than a predefined number of times, 7. On the other hand, this
does not guarantee the MA to cross the localized sensors, since
the direction vector is random. In this work, a better solution
is proposed. When the MA enters the communication range of
a localized sensor at least 7 times, a virtual attractive force is
applied to the MA. Similar to the sparse case, the direction of
the virtual force is towards the closest minimum valued grid
of H.

The proposed path planning algorithm finds the solution
for the direction control in sparsely and densely populated
areas as described above. In the following part, the proposed
localization mechanism is explained.

IV. LOCALIZATION METHOD

In this work, the localization algorithm is based on node-
to-node distances obtained by TOA technique. In 2-D, sensor
coordinates with at least three neighboring anchors are found
by solving a linear set of equations [6]. On the other hand,
in case there exists only two neighboring anchors, linear set
of equations do not provide a solution. Decreasing the known
positions in the sensor range creates position ambiguity. This
ambiguity has symmetry and the sensor position can be one
of the two symmetric positions.

The aim in using optimization is to localize sensors with
few anchors. Considering the entire problem, localization with
less anchors leads to smaller anchor threshold ¢ for the path
planning strategy. Besides, with smaller &, the MA stays
less in the surveillance region to localize all sensors. This
improvement decreases the process cost. Moreover, compared
to solving linear set of equations, the localization accuracy is
improved by the proposed optimization algorithm.

For the problem formulation, the Euclidean distance be-
tween n!" anchor and the i*" sensor is denoted by

Tni = \/(an,w - xi)Q + (an,y - yi)2

where a,, , and a,, are the components of vector a,, repre-
senting the anchor coordinates.

The purpose of localization is to find the positions satisfying
the distance constraints by minimizing the error function. This
problem can be expressed by (15a-15c). e,; in (15b) is called
the error between the real distance r,; and the estimated
distance |la,, — x;|| [3].

(14)
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Minimize Cni 15a
Xi,eni Z(”)ef ( )
subject to  eni=|la, — x;||3 — r2; (15b)

Xi,ap > 0 (15¢)

However, (15b) is non-convex due to equality. In this work,
the non-convex problem formulation is modified to a biconvex
form using alternating minimization algorithm (AMA) in [8].
This process does not guarantee the global optimum solution.
However, the performance of AMA is significantly better than
the alternative solution expressed in the simulation results.

V. ALTERNATING MINIMIZATION

The problem in (15) is not convex. One solution is convert-
ing the equality constraint to an inequality, i.e (16).

(16)

However, without a lower bound, (16) does not serve for
the purpose. One way of avoiding the trivial solution is to
have a cost function which includes a related term that is to
be maximized as in (17).

Maximize a, — ;|3
mize 3 lan — a3

Besides, the quadratic cost function in (17), ||a, — ;|3 =
(a,—z;)T (a, —x;), is converted into an affine form to bring

the original problem into a convex structure. Thus, the cost
function is modified as (18),

lan — ;|2 < i

a7

lan = ill3 = (an — =) (an — ;) (18)

where Z; is the sensor position estimated in the previous
iteration. In the light of above, the optimization problem in
(15) is expressed as

i _ _p\T _ .
M%Pn Z(n)e€ ln ez(n)eg(an z;)" (an, — ;) (19a)
Subject to Han - -’Ei”g S Tni + tn (19b)
x;,a, >0 (19¢)

Here, t,,’s are slack variables to be minimized. Moreover,
(17) is integrated to the problem by minus sign in the cost
function (19a). Hence, the estimated distances in (19b) are
minimized and the sum of estimated distance squares in
(19a) are maximized. Therefore, x;’s are found such that
the estimated distances converge to r,;’s. After all these
modifications, the problem in (19a-19¢) becomes a modified
version of the original problem in bi-convex form. This allows
us to find a solution using a convex optimization solver, such
as CVX [9].

VI. SIMULATION RESULTS

In this section, the effectiveness of the proposed path
planning algorithm (PA) and the localization algorithm (AMA)
are justified. PA is compared with the adaptive path planning
algorithm in [5] and VB-ERL in [4]. Unless otherwise is
stated, the settings given in Table 1 are used for the simu-
lations.

The MA is located at the center of the surveillance region
initially and moves 1000s. The adaptive path planning algo-
rithm in [5] is abbreviated as AA. The number of unknown
sensor positions are expressed as residue unknowns.
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TABLE I: Parameter settings for the simulations.

L = 100m p = lm/s Frp=3

R =5m d =90 Deg. Far =5
a=0.75 Prar = 3m/s T=2
o =1 Py in = 0.5m/s £E=5
Broadcast Time = 1s N =30 A=4

In Figure 3, Frp is swept from 0.1 to 5 for N=30 and
the MA movement times are 600s, 800s and 1000s. The
average number of residue unknowns for PA are compared
with AA in Figure 3. As it is seen, the contribution of virtual
attractive force in PA boosts the performance. Less sensors
remain unknown in PA compared to AA [5]. For 1000s run,
almost all sensors are localized in PA while AA still has 3
residue unknowns. When the remaining unknowns are more
than 6 for AA at 1000s, only 1 sensor remains unknown in
PA. Hence, when there is control over the velocity and the
direction of the MA for sparsely and densely populated areas,
more sensors are reached and located for various Frp values.
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(a) Proposed Algorithm (PA)
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0 1 2 3 4 5

FREF‘ULSIVE

(b) Adaptive Path Planning in [5] (AA)

Fig. 3: Number of unknown sensor nodes remaining vs F.p.

In Figure 4, Ppar = 3.5m/s, P, is swept form 0 to
Im/s by 0.1m/s for N=30 and 50. Other parameters are the
same. Figure 4 shows the number of residue unknowns with
respect to Pin. As P, increases for N=50, the average
number of residue unknowns increases from 1.3 to 1.7 in PA
while it increases from 5 to 15 for AA. For various sensor
numbers, PA localizes more sensors than AA. Besides, the
residue unknowns for PA varies more slowly than AA which
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shows that AA is more vulnerable to velocity mean changes.

-
a

== PA N=30
=—PA N=50
== OA N=30
=—O0A N=50 1

\

|

NUMBER OF RESIDUE UNKNOWNS
\

MINIMUM MEAN VELOCITY (m/s)

Fig. 4: Residue unknown nodes vs. Pmin

In Figure 5, Ppaz = 3.5m/s, Ppim = 0, Frp = 3,
the movement time is swept from 1 to 3000 by 10, other
parameters remain fixed. Results show that PA covers %80 of
the region at 360s. However, AA in [5] and VB-ERL algorithm
in [4] reach %80 coverage at 875s and 2150s respectively.
Since it is directed to the grids with the least number of
anchors, the virtual attractive force provides the MA with more
coverage in shorter time than other methods.
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Fig. 5: Coverage ratios of the proposed algorithm, the adaptive
algorithm in [5] and VB-ERL in [4]

In Figure 6, linear localization in [6] and localization
with AMA are implemented in PA. For ¢ = 5, movement
time=1000s and Py, = 3.5m/s, the noise variance o for
distance measurements is swept from 0.1 to 2 by 0.1. RMSEs
between the real and calculated sensor positions are compared
for two methods. As in Figure 6, after 0=0.3, AMA has lower
error than the linear localization in [6] for the same number
of residue unknowns.

—Linear Localization
.

5 —Localization with AMA/
4

w /,
23 7~
" // ]
1/
0
0.5 1 1.5 2

NOISE STANDARD DEVIATION ()

Fig. 6: Efficiency curve of AMA and linear localization
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AMA is implemented in PA as the localization method and
the performance is expressed in Figure 7. The MA movement
time is 1000s and the anchor threshold ¢ is swept from 2 to
7 for different noise variances o. Since AMA lets £ to be as
small as 2, it also increases the performance of path planning
algorithm in terms of residue unknowns. As in Figure 7, lower
anchor threshold leads to less residue unknowns for the same
movement time

=
4]

—_—g=2
—_—=1
—=0.1
3 » pd -~ A

«n

=
=

NUMBER OF RESIDUE UNKNOWNS

"\

N

3 4 5 6 7
ANCHOR THRESHOLD ¢

Fig. 7: Residue unknown vs. anchor threshold &

VII. CONCLUSION
In this work, a path planning algorithm based on the

GM mobility model is proposed for mobile anchor based
wireless sensor network localization. Alternating minimization
algorithm is used for localizing the sensors. In this approach,
by defining a virtual attractive force, a control mechanism
is created on the MA direction for sparsely and densely
populated areas. Besides, the non-convex structure of the
localization problem is converted into a bi-convex form and
solved with AMA. The simulation results show that the virtual
attractive force strategy increases the number of localized
sensors significantly. Moreover, applying AMA provides a
faster coverage for path planning, since it requires less anchors
for localization. The alternating minimization also increases
the localization accuracy compared to the linear localization.
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