
HIGH-DIMENSIONAL OPTIMIZATION OF COLOR CODED APERTURES FOR
COMPRESSIVE SPECTRAL CAMERAS

Hoover Rueda?, Henry Arguello†, and Gonzalo R. Arce?

? Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA.
†Department of Computer Science, Universidad Industrial de Santander, Colombia.

ABSTRACT
A spectral image can be regarded as a three-dimensional cube
where each pixel is a vector of intensities representing a spec-
tral signature. Compressive spectral imaging (CSI) is a sens-
ing and reconstruction framework, based on the fundamentals
of the compressive sensing theory, which focuses on captur-
ing spectral images efficiently, exploiting their highly corre-
lated information by coding its spectral characteristics com-
monly using a black-and-white, grayscale or recently a color
coded aperture. The distribution of the entries of the coded
apertures determines the quality of the estimated spectral im-
ages. State of the art methods have used random coded aper-
tures, and some optimization procedures have focused on the
optimal design of horizontal sections of the coded apertures;
however, they do not fully exploit the spatio-spectral corre-
lations within the spectral images. To that end, in this pa-
per, it is proposed a high-dimensional optimization procedure
to design color coded apertures for CSI systems, which ex-
ploits not only the spectral correlations but also the spatial
correlations within an spectral image. Simulations analyzing
the conditioning of the sensing matrices, as well as the re-
construction quality of the attained spectral images show the
improvement entailed by the proposed method.

Index Terms— Compressive spectral imaging, coded
aperture design, color filter array, numerical optimization.

1. INTRODUCTION

Spectral imaging techniques captures sequences of two-
dimensional images along the electromagnetic spectrum,
where each pixel is a vector of intensities representing a spec-
tral reflectance signature. Information of the spectral prop-
erties of an object permits to know its components, which in
turn can be used to detect or classify the elements in a certain
image. As a result of the appearance of compressive sensing
(CS) [1], new methodologies were proposed to effectively
capture spectral images, such as compressive spectral imag-
ing (CSI) [2]. CSI imaging systems are modeled based on the
principles of a traditional spectrophotometer which records
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all wavelengths simultaneously. Particularly, a ray of light
emanating from the scene is passed through a series of optical
elements, including apertures, gratings or prisms. Given the
nature of the aperture, it can be designed to allow multiple
rays of light to simultaneously impact onto the sensor. An ar-
rangement of 2D spatially located apertures, is widely known
as a coded aperture, where each pixel is a black, or translucent
element in the conventional setting [3], or a tiny optical filter
in recent developments [4]. Both the selection of the spectral
characteristics of each pixel, as well as the spatial distribution
of them within the 2D arrangement determine the quality of
the spectral image to be estimated. Regarding the spectral
characteristics, the use of optical filter-based coded apertures,
so-called color coded apertures [4, 5], entails a single-step
3D spatial-spectral coding on the input data cube, compared
to black-and-white or grayscale coded apertures, which only
carry-out 2D spatial coding. Thus, the color coded aperture
provides higher flexibility on the selection of voxels from the
scene being integrated on the sensor.

Optimization of black-and-white coded apertures has
been demonstrated in the past [6]. Regarding color coded
apertures, a single work have reported their optimization [4],
but focusing only on row-wise optimization, which does not
fully exploit the spatial correlation within spectral images.
To that end, in this paper, it is proposed a high-dimensional
optimization procedure to design color coded apertures for
CSI systems, exploiting not only the spectral correlations
but also the 2D spatial correlations within an spectral image.
The high-dimensional optimization focus on the design and
selection of each element in the coded aperture, including
the cut-off frequencies of the optical filters, as well as the
exploitation of the correlation between rows, columns and
spectral planes of the scene.

2. COMPRESIVE SPECTRAL IMAGING SYSTEMS
2.1. CSI Sensing Model
Different CSI architectures have been proposed to date, most
of them using black-and-white coded apertures or spatial light
modulators (SLMs) [3, 7], and just recent works use color
coded apertures to perform the coding [4, 5, 8]. Prisms and
gratings are conventionally used to disperse the optical field
from the scene, and monochrome sensors are used to inte-
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Fig. 1. Example of CSI systems: The coded aperture snapshot
spectral imager (CASSI [3]), the CASSI with color-coded
apertures (C-CASSI [5]), the snapshot colored compressive
spectral imager (SCCSI [8]), and the spatial-spectral encoded
compressive spectral imager (SSCSI [7]).

grate the modulated field. Figure 1 shows 4 examples of CSIs,
widely known and used nowadays. For the scope of this pa-
per, we focus on the single-disperser coded aperture snapshot
spectral imager, which uses a prism and has been demon-
strated using black-and-white (CASSI) and color coded aper-
tures (C-CASSI). The use of color coded apertures provides
improved results compared with black-and-white apertures
[4], therefore we focus on the optimization of color coded
apertures.

Let denote the spectral scene as the 3D function f(x, y, λ),
and the color coded aperture as the 3D function T (x, y, λ),
where x, y represent the spatial coordinates and λ the spectral
domain. In particular the coded aperture function is given by,

T `(x,y,λ)=
∑
n,m,k

t`n,m,krect
(
x

∆c
−m, y

∆c
−n, λ

∆L
−k
)
, (1)

where ∆c is the pitch size of the coded aperture, ∆L rep-
resents the bandwidth of the color filters, t`n,m,k is the cod-
ing applied by the `th snapshot to the (n,m, k)th voxel of
the Q = N × N × L spectral image, such that n,m =
0, 1, . . . , N2−1 index the discretized spatial coordinates, and
k = 0, 1, . . . , L − 1 the discrete spectral bands. Remark that
` = 0, 1,K − 1 accounts for the number of snapshots being
captured, where the coded aperture pattern changes to cap-
ture new information from the scene. Assuming ideal space-
invariant optical impulse response of the CSI system, the `th

compressive snapshot can be modeled as,

g`(x, y) =

∫
Λ

T `(x+ s(λ), y, λ)f0(x+ s(λ), y, λ)dλ, (2)

where s(λ) represent the dispersion fuction of the prism, and
Λ is the spectral range sensitivity of the monochrome sensor.

2.2. Higher-order discrete model approximation

The bandwidth of each spectral band of the datacube is given
by how much of the dispersion spread impinges onto a pixel
of the sensor. This can be modeled as, s(λk) − s(λk+1) =
k∆, where ∆ is the pitch size of the sensor. Figure 2 shows
the propagation of a single voxel of the datacube through the
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Fig. 2. Propagation of a single voxel through the CSI system.

optical system. There, it can be seen that the single voxel
spreads onto more than a single FPA pixel due to the contin-
uous nature of the dispersion function s(λ) [9]. Mathemati-
cally, the portion of the voxel that impinges in each FPA pixel
can be written as,

(wn,m)
r
k =

(n+1)∆;(m+1)∆;λk+1∫∫∫
n∆;m∆;λk

rect
(
x+s(λ)

∆
−m′, y

∆
−n, λ

∆
−k
)

×rect
( x

∆
−m, y

∆
−n
)
dxdydλ, (3)

Therefore, Eq. (2) can be expressed in discrete form as

g`n,m =
∑
r

∑
k

t`n,m−k−r,kfn,m−k−r,k (wn,m)
r
k . (4)

2.3. Matrix linear system model

Expanding (4) to account for the full resolution of the sen-
sor can be parsed as the linear system, g` = H`f , where
fq = f(q−b q

N cN),(b q
N c−b

q

N2 cN),b q

N2 c
, for q = 0, 1, . . . , Q−1.

Note that this linear system, is highly under-determined, and
exhibits a compression ratio of R = V/Q ∈ [0, 1], where 1
means no compression. Therefore, we need to force the sens-
ing matrix to exhibit a close-to-well-conditioning behavior in
order to obtain a good estimation of f . The goal is to ex-
press the sensing matrix in terms of the entries of the coded
aperture, such that a correct design of the latter entails a well
conditioning of the former. The entries of the sensing matrix
H` are given by,

(h`q)v =

Q−1∑
q′=0

(pq′)v (̃t
`
q)q′ , (5)

for v = 0, 1, . . . , V − 1, where v and q index the rows and
columns, respectively. Note that the entries of H` are the
inner products between two matrices H` = PT`, such that
T` = [̃t`0, t̃

`
1, . . . , t̃

`
Q−1] represents the effect of the coded

aperture, and P = [p0,p1, . . . ,pQ−1], represents the effect
of the dispersive element, with t̃`q ∈ IRQ and pq ∈ IRV . The
entries of this matrices are given by,

(̃t`q)q′ =


(
t`b q

N2 c

)
q′−b q′

N2 cN2
, if q = q′

0, otherwise
, (6)

such that
(
t`
)
q

= t`
(q−b q

N cN),(b q
N c−b

q

N2 cN),b q

N2 c
, and,



(pq′)v =


(
wr⌊

q′
N2

⌋)
q′−b q′

N2 cN2

, if v = q′ − q′′r

0, otherwise
(7)

such that (wr
k)q =

(
w(q−b q

N cN),(b q
N c−b

q

N2 cN)

)r
k
, and q′′r =⌊

q′

N2

⌋
N2 + rN . Evaluating the summation in Eq. (5) in

terms of Eqs. (6) and (7), and noting that Eq. (6) describes
the entries of a block-diagonal matrix, then it is obtained,

(h`q)v=


(
wr

b q

N2 c

)
q−b q

N2 cN2

(
t`b q

N2 c

)
q−b q

N2 cN2
, if v = gr

0, otherwise
(8)

where gr = q −
⌊
q
N2

⌋
N2 + rN , for r = 0, 1, . . . , R− 1.

3. OPTIMIZATION MODEL
3.1. CS inverse problem estimation

Note that in order to obtain a reconstruction from a under-
determined linear system of equations, certain conditions
must be imposed such that the recovery becomes feasible.
The theory of CS has emerged to solve this kind of problems
in a reliable way. One of the general conditions CS proposes
is to impose that the input data can be represented in a very
compact way (sparse) when projected over an orthogonal
basis. This can be mathematically modeled as,

g = Hf = HΨθΨθΨθ = Aθθθ (9)
where θθθ ∈ IRQ is a compact (or sparse) version of the signal
f in the basis ΨΨΨ ∈ IRQ×Q, H =

[
(H0)T , . . . , (HK−1)T

]T
is

the multishot sensing matrix, and g =
[
(g0)T , . . . , (gK−1)T

]T
is the resulting set of measurements.

The vector θθθ is said to be a compact representation of f
because all the information of the latter is concentrated in just
few coefficients of the former. That is, ‖supp(θθθ)‖ = ‖{j :
|θθθj | > 0}‖ = S, with S << Q. By multiplying the represen-
tation domain ΨΨΨ with the transfer function H, it is obtained
the compressive sensing matrix A ∈ IRKV×Q. Based on the
sparse assumption, CS permits to recover an estimation of the
data cube f̂ from the compressive measurements g by solving
the LASSO-related minimization problem,

f̂ = Ψ−1Ψ−1Ψ−1
(
argminθθθ′‖g −Aθθθ′‖22 + τ‖θθθ′‖1

)
, (10)

with τ > 0 being a regularization parameter.

3.2. Design of the sensing operator A

Compressive sensing also requires that the matrix A satisfy
certain condition, such as the restricted isometry property
(RIP), or similarly, that the matrices H and ΨΨΨ be mutually
incoherent [4]. Satisfying these conditions guarantees, with
high probability, the correct estimation of the input signal. In
particular, the RIP for the matrix A of order S is defined as
the smallest δS such that,

(1− δS) ‖θθθ‖22 ≤ ‖Aθθθ‖22 ≤ (1 + δS) ‖θθθ‖22, (11)

where δS is given by,
δS = max

ρ⊂[Q],|ρ|≤S
‖AT
|ρ|A|ρ| − III‖22, (12)

with A|ρ| being a KV × |ρ| matrix whose columns are equal
to |ρ| columns of A indexed by the set ρ, and III is an iden-
tity matrix. To satisfy the RIP condition, the matrix A must
be carefully designed. This matrix relies directly on the se-
lection of the representation matrix ΨΨΨ along with the struc-
ture of the sensing matrix H. In particular, based on Eq.
(8), the entries of A = HΨΨΨ = [a0,a1, . . . ,aQ−1], where
ΨΨΨ = [ψψψ0 ψψψ1 . . .ψψψQ−1], are given by,

(aj′)i′ =
R−1∑
r=0

L−1∑
k=0

(wr
k)i′−(k+r)N−b i′

V cV

(
t
b i′V c
k

)
i′−(k+r)N−b i′

V cV
× (ψψψj′)i′−(k+r)N−b i′

V cV+kN2 , (13)

for i′ = 0, . . . ,KV − 1, and j′ = 0, . . . , Q− 1. Defining the
matrix A|ρ||ρ| = AT

|ρ|A|ρ|, δS can be rewritten as
δS = max

ρ⊂[Q],|ρ|≤S
λmax

(
A|ρ||ρ| − I

)
, (14)

where A|ρ||ρ| is given by,
K−1∑
`=0

V−1∑
i=0

R−1∑
r1=0

L−1∑
k1=0

R−1∑
r2=0

L−1∑
k2=0

(
wr1
k1

)
i−(k1+r1)N

(
wr2
k2

)
i−(k2+r2)N

×
(
t`k1
)
i−(k1+r1)N

(
t`k2
)
i−(k2+r2)N

× (ψψψl1)i−(k1+r1)N+k1N2 (ψψψl2)i−(k2+r2)N+k2N2 . (15)

3.3. Proposed optimization model

Given that the weights wr
k and the basis ΨΨΨ are fixed and

bounded, the first depends on the dispersive element, and the
second on a-priori selection, the entries of A|ρ||ρ| in Eq. (15)
can be modeled as a sub-Gaussian random variable, such that
the minimization of its parameter β =

K−1∑
`=0

V−1∑
i=0

R−1∑
r1=0

L−1∑
k1=0

R−1∑
r2=0

L−1∑
k2=0

(
t`k1
)
i−(k1+r1)N

(
t`k2
)
i−(k2+r2)N

(16)
yields to a small parameter δs, and so, to better satisfy the
RIP. Note that β can be minimized by minimizing the prod-
ucts of the entries of the coded aperture

(
t`k1
)
i−(k1+r1)N

×(
t`k2
)
i−(k2+r2)N

. This problem can be cast as the minimiza-
tion of the products of the entries of the coded aperture within
a window of size R + L × R + L, around each pixel (i −
(k1 + r1)N) of each band k1, for every `th snapshot be-
ing captured. Intuitively, we seek to spread the number of
translucent elements of the coded aperture within a cube of
sizeR+L×R+L×L centered at the pixel (i−(k1 +r1)N).
Formally, this can be written as the optimization problem

argmin
{t`0,...,t`L−1}K−1

`=0

L∑
k=1

R+L∑
i=1

R+L∑
j=1

τkUi,j + τiVj,k + τjWi,k,

subject to
K−1∑
`=0

t`k = 1, for k = 0, . . . , L− 1 (17)
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where, Ui,j controls the spread in the x−y range of the cube,
Vj,k controls the spread along the y−λ domain,Wi,k controls
the x − λ spread, and τk, τi, τj are weight constants, which
prioritize one kind of spreading over the others. Note that,
the constraint guarantees obtaining a solution different from
the trivial (all-zero) coded aperture, which optimally mini-
mizes Eq. (16). To solve the optimization problem proposed
in Eq. (17), we developed an iterative algorithm which ran-
domly walks along all the pixels, of a set of randomly gener-
ated coded apertures satisfying the complementary constraint,
and evaluates the objective function of the problem for each
snapshot. The snapshot pixel that gives the lowest objective
value is set to 1, and the rest are set to 0. The algorithm iter-
ates on the updated coded aperture until the objective function
stops decreasing.

4. SIMULATIONS

4.1. Coded aperture optimization results

To evaluate the outcome of the proposed method, we perform
a comparison against random coded apertures, and against
the coded apertures resulting of the row-wise optimization
algorithm [4]. A widely use method to compare different
measurement strategies is the singular value decomposition
(SVD) analysis of the sensing matrices A from each method
[10]. This analysis does not depend on prior information
about the scene, and it relies on the condition number (κ),
defined as the ratio of the greatest singular value to the least
nonzero singular value, to measure how ill-conditioned is the
problem; the closer the condition number to 1, the better con-
ditioned the matrix. Figure 3 shows the SVD curves of the
3 methods being compared. It can be seen that the proposed
method attain the best condition number for the first 50 and
100 components, and exhibits a slower-decaying behavior of
the SVD coefficients, thus it is prone to capture more orthog-
onal components of the scene.

A single color-coded aperture realization of each of the
three methods being compared is depicted in Fig. 4. Recall
that the color-coded aperture can be regarded as a 3D cube,
thus a front view (x − y) and a top view (x − λ) are shown.
It can be seen that the row-wise optimization method exhibits
an structured pseudo-random behavior due to its row-wise op-
timization nature, whereas the proposed method spreads the
non-zero values along the 3 dimensions.
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Fig. 3. SVD analysis of the sensing matrices A. (a) First 50
components, (b) First 100 components.

Random (x-y axis)

Random (x-λ axis)

Row-wise (x-y axis)

Row-wise (x-λ axis)

Proposed (x-y axis)

Proposed (x-λ axis)

x

λ

x

λ

x

λ

x

y

x

y

x

y

Fig. 4. Comparison of colored coded apertures. (First row)
Front view, and (Second row) Top view.

4.2. Testing optimized system reconstruction

To test the impact of the proposed coded aperture optimiza-
tion algorithm in the quality of the reconstruction of spectral
images, we use 2 spectral data cubes (Balloons and Beads)
with N × N = 256 × 256 pixels of spatial resolution, and
L = 24 spectral bands, from the CAVE database [11]. We
tested different scenarios using different amounts of snap-
shots K = 2, 4, . . . , 24, and the three kinds of coded aper-
tures. The reconstruction were attained by solving the CS
problem in Eq. (10), employing the gradient projection for
sparse reconstruction (GPSR) algorithm [12], using the Kro-
necker product between the 2D Wavelet Symmlet 8 transform
and the 1D discrete cosine transform, as the representation
basis function ΨΨΨ. This configuration and this algorithm have
shown to be reliable and relatively fast to attain good recon-
structions. The best penalization parameter τ was found by
try and error within the range τ ∈ [3e− 6, 3e− 4] for each
case. Figure 5 summarizes the reconstruction results in terms
of the peak signal to noise ratio (PSNR) and the structural
similarity index (SSIM). Remark that the larger the PSNR the
better the reconstruction, and similarly, the closest the SSIM
index to 1, the better the reconstruction. Therefore, it can be
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Fig. 5. Overall reconstruction comparison in terms of PSNR
and SSIM for different snapshots using the three methods.
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Original Rand Row-wise Proposed

Fig. 6. Zoom sections of the reconstructions mapped to RGB
color-space, when (First row) K = 12 are captured for the
balloons. (Second row) K = 10 are captured for the beads.

noticed that the proposed optimization algorithm generates
better coded apertures for the CSI system, as its PSNR and
SSIM overcomes the row-wise and the randomly generated.
It worth pointing that the proposed algorithm perform better
for larger number of snapshots since the number of non-zero
values, per snapshot, decreases to satisfy the complementary
constraint in Eq. (17). Figure 6 shows a comparison of the
estimated spectral images when K = 12 snapshots are cap-
tured by the CSI system for the Balloons, and K = 10 for
the Beads. The cumulative errors along the 24 spectral bands
are shown for ease of interpretation in Fig. 7. Finally, Fig. 8
shows 3 out of the 24 spectral bands of Fig. 6(b), to see the
improvement at wavelength level. Although not easily notice-
able, the images at the right-most column preserves better the
edges, and they are more artifact-free.

5. CONCLUSIONS

A new optimization of colored coded apertures has been pro-
posed and demonstrated. The attained optimal coded aper-
tures overcomes the quality of up-to-date proposed coded
aperture optimization procedures. In particular, the opti-
mal coded apertures entail an improvement of around 8 dBs
in terms of PSNR against random distributions and 3 dBs

Error of Random

0

0.5

1

1.5

2
Error of Row-wise

0

0.5

1

1.5

2
Error of Proposed

0

0.5

1

1.5

2

Error of Random

0

2

4

6

Error of Row-wise

0

2

4

6

Error of Proposed

0

2

4

6

Fig. 7. Cumulative errors of the reconstructions for (First
row) Balloons database with K = 12, and (Second row)
Beads database with K = 10. (Units in %)
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Fig. 8. Reconstructions results of the 5th, 10th and 20th spec-
tral bands for the beads database, using K = 10.

around row-wise optimization. Furthermore, the proposed
coded apertures entail a better conditioned sensing matrix
with a condition number of κ = 1.0633 for the 100 first
singular values.
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