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Abstract—In this work, we propose a distributed cubature
information filter based multi-object tracking method with an
information weighted selection for unmanned aerial vehicle (UAV)
networks. In an UAV network, multiple UAVs can observe
multiple objects in the region of interest. Further, the UAVs can
exchange the objects local information among themselves and
fuse them together to obtain the global state of the objects. As
the number of UAVs in the network increases, the information
exchange among the UAVs suffers from scalability, bandwidth
and energy limitations. Thus, it is usually desirable to allow only
a desired number of UAVs with highly relevant information to
participate in the information exchange. In our approach, the
innovation vector within the information filtering framework is
used to calculate the amount of information associated with
each UAV. Further, a threshold based selection mechanism is
proposed to facilitate the UAVs to take independent decisions on
whether to participate in the information exchange or not. In the
proposed method, the UAVs take the decision to participate in the
information exchange based on the information associated with a
dynamic subset of objects known as priory objects while keeping
the total number of information exchanges in the network to a
desired number (on average).

I. INTRODUCTION

Vision based object tracking with an unmanned aerial
vehicle (UAV) is an important feature in several modern
applications such as surveillance, disaster management, traffic
management, and so on [1]. In these applications, the UAV
is equipped with a camera to obtain the visual information of
objects in the region of interest (ROI) which can be used to
track the objects over time. In [2], [3] and references there in,
authors employed the Bayesian filters such as the Kalman filter
(KF) and the extended Kalman filter (EKF) to track the objects
using a single UAV. The accuracy of single UAV based object
tracking algorithms may suffer from different adverse effects
such as distance, speed or orientation of the UAV with respect
to the objects, occlusions in the ROI, and so on. However, a
network of UAVs with overlapping field of views (FOVs) is
capable of providing multiple visual measurements of the same
object simultaneously. Thereby, aggregating them to achieve a
global state can improve the accuracy of the object tracking.

In [4], [5], [6] and [7] authors presented cooperative vision
based object tracking methods with multiple UAVs based on
the KF, EKF, particle filters and sigma point information
filter, respectively. Information filters are more suitable for
multi-sensor (UAV) object tracking compared to the conven-
tional Bayesian filters due to their inherent information fusion
mechanism [8]. In our previous work [9] and [10], we have

proposed a multi-camera object tracking method based on the
cubature information filter (CIF) with fixed cameras. There, it
is shown that the CIF achieves better tracking accuracy than
the extended information filter (EIF). Hence, as one of the key
contributions of this paper, the CIF based object tracking is
extended for object tracking applications in the UAV networks.

In addition, nowadays, UAV networks tend to evolve into
large scale Ad-Hoc networks with limited bandwidth and
energy reservoirs [1]. Even though, the large number of UAVs
improves the tracking accuracy, the exchange of local informa-
tion among the UAVs can increase the communication over-
head and energy consumption. Hence, allowing only a desired
number of UAVs to participate in the information exchange is a
way to meet the bandwidth and energy requirements. In [11],
authors presented a controlled gossip mechanism for target
recognition in swarm UAV networks to match the available
resources. In [4], a collaborative tracking method where cam-
eras on the UAVs are directed to point of interest with the
necessary adjustments according to the UAV/target movement
is proposed to minimize the data transmitted between UAVs.
These methods require exchange of control information among
the UAVs and/or base stations to select the UAVs that can
participate in the information exchange.

In this work, a distributed information weighted UAV
selection mechanism that selects on average a desired number
of UAVs to participate in the information exchange without
any control overhead is proposed. Consider a distributed
network of UAVs without a base station that can monitor
multiple objects in the ROI simultaneously. Each UAV in the
network is equipped with a local CIF in order to calculate
the local information metrics for each object in the ROI. In
general, the measurements associated with an object in the ROI
have a varying degree of information. The proposed method
selects on average a desired number of UAVs with highly
informative measurements to improve the tracking accuracy.
The innovation vector within the CIF framework is used to
calculate the amount of information associated with each UAV.
The other key features of the proposed method include: i)
Each UAV can independently decide whether to participate
in the information exchange or not based on the information
associated with a subset of objects known as priory objects; ii)
Each UAV can have a different set of priority objects; iii) The
contribution of each UAV to the desired average transmissions
in the network can be different or same while keeping the
number of information exchanges in the network to a desired
number. Finally, each UAV fuses the information received from
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the selected UAVs by using the inherent fusion mechanism of
the CIF to achieve the global state of the objects in the ROI.

The paper is organized as follows, Section II describes
the motion and measurement models of the objects and the
UAVs, respectively. Section III describes the basic concepts
of information filtering. Section IV explains the proposed in-
formation weighted selection mechanism. Section V evaluates
the proposed multi-UAV information filtering scheme based on
simulation results. Section VI presents the conclusions.

II. SYSTEM MODEL

Let us consider a distributed network consisting of a set
of UAVs ni, where i = 1, 2, · · · , N , that can observe a ROI
on the ground plane. The task of the object tracker is to
identify and track multiple objects oj , where j = 1, 2 · · · , O
in the ROI. This is achieved by the CIF based filtering and
distributed information fusion performed by each UAV ni in
the network. The state of an object oj comprises of its position
and the velocity in x and y directions on the ground plane.
Thus, at time k, the state of the object oj is described as
xj,k = [xj,k yj,k ẋj,k ẏj,k]

T . The motion model of the object
oj at time k is given as

xj,k = fj,k (xj,k−1,wj,k)

=


xj,k−1 + δẋj,k−1 +

δ2

2 ẍj,k
yj,k−1 + δẏj,k−1 +

δ2

2 ÿj,k
ẋj,k−1 + δẍj,k
ẋj,k−1 + δÿj,k

 , (1)

where ẍj,k and ÿj,k are the accelerations of the object oj in x
and y directions that are modeled by a vector of independent
and identically distributed (IID) white Gaussian random vari-
able wj,k with covariance Qj,k. δ is the time interval between
the two consecutive measurements. The state of the object oj
is estimated based on the visual measurements from the UAVs
taken at each time step k. The measurements of the object oj
at the UAV ni and time k are given as

zi,j,k = hi,j,k (xj,k) + vi,j,k, (2)

where vi,j,k is an IID white Gaussian measurement noise
vector with covariance Ri,j,k. The measurement function hi,j,k
is the non-linear homography function which converts the
object’s 3D coordinates on the ground plane to 2D coordinates
on the image plane. The homography of the UAV ni is
a function of its rotation matrix R̃i,j,k and position ti,j,k
and camera calibration matrix Ki,j,k. The homography matrix
Hi,j,k which defines the non-linear homography function in
(2) is given as

Hi,j,k = Ki,j,k

[
R̃i,j,k ti,j,k

]
. (3)

The measurement model (2) is adopted from [7] and [13].

III. THE INFORMATION FILTER FRAME WORK

Information filters are alternative version of the Bayesian
filters such as the KF and EKF. In information filtering, the
information vector and information matrix are computed and
propagated over time k instead of the estimated state vector
and error covariance matrix. Let us assume that the initial prob-
ability density function (PDF) p (xi,j,0) of the object oj at the

UAV ni is Gaussian with mean x̂i,j,0|0 and covariance Pi,j,0|0.
At the UAV ni and time k−1, the estimated global information
matrix Yi,j,k−1|k−1 and information vector ŷi,j,k−1|k−1 of the
object oj are given as

Yi,j,k−1|k−1 = P−1i,j,k−1|k−1, (4)

ŷi,j,k−1|k−1 = Yi,j,k−1|k−1x̂i,j,k−1|k−1, (5)

where x̂i,j,k−1|k−1 and Pi,j,k−1|k−1 are the estimated global
state vector and covariance matrix, respectively.

At time k, information filters have two essential steps:
time and measurement update. In the time update, the pre-
dicted information matrix and vector

[
Yi,j,k|k−1, ŷi,j,k|k−1

]
are computed from the prior information matrix and vector[
Yi,j,k−1|k−1, ŷi,j,k−1|k−1

]
. Upon receiving the measurement

zi,j,k, the measurement update is performed to calculate the
information contribution vector and matrix [ii,j,k, Ii,j,k] as

ii,j,k = Ai,j,k
(

ei,j,k + PTxz,i,j,kŷi,j,k|k−1
)
, (6)

Ii,j,k = Ai,j,kPTxz,i,j,kYTi,j,k|k−1, (7)

where
Ai,j,k = Yi,j,k|k−1Pxz,i,j,kR−1i,j,k, (8)

and Pxz,i,j,k and ei,j,k are the cross covariance and innovation
vector, respectively. The innovation vector ei,j,k is given as

ei,j,k = zi,j,k − ẑi,j,k|k−1, (9)

where ẑi,j,k|k−1 is the predicted measurement.

In [9], we illustrated that the CIF can achieve better
tracking accuracy than the EIF. Hence, in this paper, the CIF is
used as the local information filter at each UAV in the network.
Algorithm 1 shows the essential steps of the information filter
for each object oj at the UAV ni and time k. Refer to [9] for
the detailed derivation of the CIF algorithm.

Now, assume that at time k, the UAV ni receives the
local information contribution vectors ii′,j,k and information
contribution matrices Ii′,j,k from the N ′ other UAVs in the
network. Then, the global information vector and matrix of
the object oj at the UAV ni and time k are calculated as

ŷi,j,k|k = ŷi,j,k|k−1 + ii,j,k,+
N ′∑
i′=1

ii′,j,k, (10)

Yi,j,k|k = Ŷi,j,k|k−1 + Ii,j,k +
N ′∑
i′=1

Ii′,j,k. (11)

Algorithm 1 Information filter framework for object oj at UAV
the ni and time k.

1) Calculate the predicted information vector ŷi,j,k|k−1
2) Calculate the predicted information matrix Yi,j,k|k−1
3) Calculate the predicted measurement ẑi,j,k|k−1
4) Calculate the innovation vector ei,j,k
5) Calculate the predicted cross covariance Pxz,i,j,k
6) Calculate the information contribution vector ii,j,k
7) Calculate the information contribution matrix Ii,j,k
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IV. THE INFORMATION WEIGHTED UAV SELECTION
WITH PRIORY OBJECTS

The large scale UAV networks such as the swarm UAV
networks can have limited bandwidth and energy reservoirs.
Therefore, it is necessary to reduce the number of information
exchanges among the UAVs to a desired number while esti-
mating the global information vector and matrix. On the other
hand, reducing the information exchanges among the UAVs
can lead to decreased tracking accuracy. A better tracking
accuracy can be achieved by selecting the desired number
UAVs with the highly informative measurements rather than a
random selection.

In information filtering, the innovation vector ei,j,k is the
disagreement between the predicted measurement ẑi,j,k|k−1
and the actual measurement zi,j,k as shown in (9). The
predicted measurement ẑi,j,k|k−1 is approximated as the ex-
pectation of the likelihood PDF p

(
zi,j,k | xi,j,k|k−1

)
. Hence,

the innovation ei,j,k gives the additional information in the
received measurement zi,j,k that is not available in the pre-
dicted state x̂i,j,k|k−1. Hence, the innovation ei,j,k can be used
to quantize the amount of new information available in the
measurement zi,j,k of the object oj at UAV ni and time k.

Considering the described system model (1) and (2), the
PDF p (ei,j,k) of the innovation ei,j,k of the object oj at UAV
ni and time k becomes approximately a zero mean Gaussian
distributed random variable with covariance Pzz,i,j,k. Hence,
the information available in the innovation vector ei,j,k can be
calculated using the self information principle [12] as

Hi,j,k = −loge (p (ei,j,k)) ≈ eTi,j,kP−1zz,i,j,kei,j,k = χ2
nz
, (12)

where χ2
nz

is a chi-square distribution with a degree of freedom
of nz and nz is the length of the measurement vector zi,j,k. If
the length of the measurement vector remains the same for the
object oj at each UAV ni, then the information metric Hi,j,k

at each UAV ni becomes a chi-square distributed variable with
a degree of freedom of nz irrespective of the corresponding
innovation covariance Pzz,i,j,k.

The goal of this paper is to select on average a desired
number of UAVs based on the amount of information associ-
ated with the measurements of a set of priority objects. The
priority objects at the UAV ni are represented with a set Os,i
and the number of priority objects is Si where Si ≤ O. Since
the innovation vector of the each priority object is independent
from each other, we can write

p (ei,1,k, ei,2,k, · · · , ei,Si,k) =

Si∏
j′=1

p (ei,j′,k) . (13)

From (12) and (13), the total information available in the
innovation vectors ei,j′,k of the priority objects o′j where
o′j ∈ Os,i can be calculated as

Hi,Si,k = −loge

 Si∏
j′=1

p (ei,j′,k)

 = −
Si∑
j′=1

logep (ei,j′,k) ,

≈
Si∑
j′=1

eTi,j′,kP−1zz,i,j′,kei,j′,k =

Si∑
j′=1

Hi,j′,k = χ2
Sni,z

,

(14)

where χ2
Sni,z

is a chi-square distribution with a degree of
freedom of Sni,z and Sni,z is the product of the number of the
priority objects Si and the length of the measurement vector
nz of each priority object. The information metric Hi,Si,k at
the UAV ni indicates the additional new information in the
measurements of the priority objects. Subsequently, it can be
used by the UAV ni to decide whether to distribute its local
information in the network or not. In order to achieve this
objective, we define a threshold χi,k to which the priority
information metric Hi,Si,k can be compared in such way that at
each time k, on average a desired number of UAVs L distribute
their local information in the network.

Let us consider an indication element si,k, where i ∈
1, 2, · · · , N , that is 1 if the UAV ni distribute the local
information and 0 otherwise.

si,k =

{
1 Hi,Si,k ≥ χi,k
0 Otherwise (15)

The goal is to select on average L UAVs to distribute the local
information in the network. Thus, from (15), we can write

E

[
N∑
i=1

si,k

]
=

N∑
i=1

E [si,k] =

N∑
i=1

Pr (si,k = 1)

=
N∑
i=1

Pr (Hi,Si,k ≥ χi,k) = L.

(16)

Based on (14), the priority information metric Hi,Si,k at any
UAV ni in the network is a chi-square distributed variable with
a degree of freedom Sni,z . Hence, if the probability that the
information metric Hi,Si,k of the UAV ni is greater than or
equal to the threshold χi,k is given as

Pr (Hi,Si,k ≥ χi,k) = ai
L

N
, (17)

where
∑N
i=1 ai = N , then the average number of information

exchanges in the network are limited to L. If the contribution
parameter ai = 1 where i = 1, 2, · · · , N , then all the UAVs
in the network have the equal probability to transmit their
local information. Since the number of UAVs N and the priory
objects S in the network and the average number of desired
UAVs that can distribute the local information in the network
L are known, From (17), the threshold χi,k can be calculated
as the critical value for which the cumulative probability of
chi-square distributed variable χ2

Sni,z
is greater than or equal

to ai LN as

χi,k = F−1
χ2
Snz

(
1− ai

L

N

)
. (18)

Each UAV ni can calculate the threshold χi,k at time k
and decide whether to distribute their local information in
the network or not by comparing the corresponding priority
information metric Hi,Si,k with it. Moreover, each UAV ni
can have a different set of priority objects and the average
number of transmissions from each UAV can be different
or the same depending on its contribution parameter while
keeping the number of transmissions in the network to the
desired number L. Hence, each UAV in the network runs a
local CIF to calculate local information contribution vectors
ii,j,k, and information contribution matrices Ii,j,k for each
object. Then, all UAVs decide whether to participate in the
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information exchange or not by using the proposed information
weighted UAV selection method. The estimated global infor-
mation vector and matrix of each object oj at the UAV ni and
time k can be achieved by fusing the information distributed
in the network as shown in (4) and (5). Algorithm 2 shows
the essential steps of the information weighted UAV selection
based distributed object tracking algorithm for each object oj
where j = 1, 2 · · · , O at the UAV ni where i = 1, 2 · · · , N
and time k.

Algorithm 2 Information weighted UAV selection based dis-
tributed object tracking algorithm at UAV ni and time k

1) Select S number of priority objects
2) Calculate the threshold χi,k as shown in (18)
3) Initialize the priority information metric Hi,Si,k to 0
4) For each object oj , where j = 1 to O, perform steps

1 to 7 in Algorithm 1
5) For each priority objects o′j ∈ Os

a) Calculate the innovation covariance matrix
Pzz,i,j′,k as shown in Appendix

b) Calculate the corresponding information met-
ric Hi,j′,k as shown in (12)

c) Add information metric Hi,j′,k to priority
information metric Hi,Si,k

6) If (Hi,Si,k ≥ χi,k), then distribute [ii,j,k, Ii,j,k] of all
objects oj , where j = 1 to O in the network

7) Compute the global estimated information vector and
matrix

[
ŷi,j,k|k, ŷi,j,k|k

]
for all objects (4) and (5)

V. SIMULATION RESULTS

In this section, the proposed information weighted UAV
selection method is evaluated based on the simulation. In our
approach, the tracking accuracy is defined in terms of the sum
of the root mean square errors (RMSE) of the estimated global
state and the ground truth of the objects in x and y directions.
The bandwidth efficiency is calculated in terms of the number
of information exchanges in the UAV network. All the UAVs
in the network can observe the xy-plane, where x ∈ [0, 500]
m and y ∈ [0, 500] m. The number of objects in the ROI
is considered to be 5. The ground truth of the position of
each object is simulated using the motion model given in (1).
The process noise covariance Qi,j,k of the ground truth of
the object is considered to be (5, 5). To achieve statistical
reliability, the proposed method is evaluated on 100 different
trajectories for each object with different initializations. The
UAVs are considered to be flying with a fixed altitude and
pitch on flat ground plane with different initial points. The yaw
angle and the roll of the each UAV are modeled as constant
with zero mean Gaussian noise which will define the rotation
matrix R̃i,j,k for each UAV ni. For the simulation purpose, the
elements in the camera calibration matrix Ki,j,k of the UAV
ni are generated as Gaussian randoms variable with variance
0.1. The position of the UAV ti,j,k from time k − 1 to k are
modeled with constant velocity. The homography matrix Hi,j,k

at the UAV ni and time k is then defined as a function rotation
matrix R̃i,j,k, position of the UAV ti,j,k and camera calibration
matrix Ki,j,k as shown in (3). The measurements at each object
at the UAV ni and time are simulated by assuming that the
measurement noise covariance Ri,j,k = diag{0.5, 0.5}.

Fig. 1. The RMSE of the estimated position and velocity of the object based
on the CIF and EIF object tracking methods compared to the ground truth.
The number of UAVs varies from 1 to 5.

Fig. 2. The RMSE of the estimated position and velocity the CIF based
information weighted and random selection methods. The size N of the
network is 20. The desired number of UAVs that can participate in the
information exchange varies form 1 to 5. The RMSE is averaged over all
the 5 objects.

The first part of this section compares the tracking accuracy
of the CIF and EIF based methods. For this comparison, only
one object is considered in the ROI. Figure 1 shows the RMSE
of the estimated position and the velocity of the object over 100
different trajectories compared to the ground truth for varying
number of UAVs in the network. The information weighted
selection is not employed for this comparison. This figure
clearly shows that CIF based distributed object tracking has
better estimation accuracy than the EIF based method.

In the second part, the accuracy of the proposed infor-
mation weighted UAV selection with the priory objects is
compared with the random selection. In the random selection,
a random subset of L number of UAVs in the network
participate in the information exchange independently of the
information contained in their measurements. Moreover, the
UAVs take independent decisions on whether to participate
in the information exchange or not. For this comparison, the
number of UAVs in the network is considered to be 20. All the
UAVs in the network have the CIF as local on-board filter. To
make the comparison fair, we consider all the 5 objects in the
ROI as priory objects. In the proposed information weighted
selection, the parameter ai normalized by N = 20 is selected
as 0.025, 0.0625, 0.075, 0.05 and 0.0375 for i = 1 to 4, i = 5
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Fig. 3. The average number of information exchanges ± variance in the
network and the contribution of each UAV for both the information weighted
and random selection methods. The size N of the network is 20. The desired
number of UAVs that can participate in the information exchange varies form
1 to 5.

to 8, i = 9 to 12, i = 13 to 16 and i = 17 to 20, respectively.

Fig. 2 shows the RMSE of the estimated position and
velocity of distributed object tracking with random selection
and the proposed information weighted selection. The x-
axis of the figure represents the average number of UAVs
that participated in the information exchange at each time
k. From this figure, we can infer that the tracking accuracy
of both the methods improves with the increasing number
of information exchanges. However, the proposed information
weighted selection method outperforms the random selection
method for any give number of average information exchanges
in the network.

Fig. 3 shows the mean ± variance of the number of
UAVs that participated in the information exchange in both the
information weighted and random selection methods at each
time k. The x-axis shows the actual desired number of UAVs
L which is used to calculate the threshold as in (18). The
y-axis shows the average number of UAVs that participated
in the information exchange during the tracking process. In
this figure, it is illustrated that on average, the number of
UAVs that distributed the local information in the network in
both the methods is approximately equal and matches to the
theoretical requirements. Fig. 3 also shows the contribution
of each UAV to the average number of transmissions in the
network. In the random selection method, each UAV has equal
contribution to the average transmissions. In the proposed
method, the contribution parameter of each UAV can be
selected in such a way that the UAVs in the network can
have varying contribution to the average transmissions. Hence,
from Fig. 2 and Fig. 3, it can be understand that the proposed
information weighted UAV selection shows better tracking
accuracy than the random selection for the same number of
average information exchanges in the network.

VI. CONCLUSION

In this work, a distributed information weighted UAV se-
lection mechanism is proposed for object tracking applications
in the UAV networks. The proposed threshold based selection
method selects UAVs with highly informative measurements

to participate in the information exchange. The threshold is
calculated in such a way that on average only a desired number
of UAVs is selected to distribute their local information in the
network at each time. Moreover, the UAVs in the network
can independently decide to participate in the information
exchange only if the information associated with all or a subset
objects (priority objects) in the ROI is greater than the thresh-
old. Under the considered simulation, the proposed information
weighted UAV selection shows a considerable improvement in
tracking accuracy over random selection for the same number
of average information exchanges. Another key contribution
of this paper is to use the cubature information filter as the
local filter at the UAVs. In our simulation results, the cubature
information filter showed a better tracking accuracy compared
to the extended information filter.
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APPENDIX

The linear approximation of the innovation covariance
Pzz,i,j,k at an UAV ni and time k can be computed as

Pzz,i,j,k = PTxz,i,j,kYTi,j,k|k−1Pxz,i,j,k + Ri,j,k. (19)

where Pxz,i,j,k and Ri,j,k are the cross covariance and mea-
surement noise covariance of the object oj at the UAV ni and
time k, respectively.
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