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Abstract—In this paper, we address the estimation of power
spectral density (PSD) matrix. The accurate estimation of PSD
matrix plays an important role in many speech enhancement
methods. In traditional PSD estimation methods, only the in-
formation of previous frames is employed through a forgetting
factor. In the current research, we consider the correlation of
inter-band components and incorporate their information to
compute the PSD matrix more accurately. The simulation results
are presented to confirm the efficiency of this method. They
show that the performance of the speech enhancement method
is substantially improved by using the proposed PSD estimation
technique.

I. INTRODUCTION

Accurate estimation of power spectral density (PSD) matrix
has been of considerable interest in several signal processing
applications, such as radar, sonar, speech and so on. For exam-
ple, the performance of many speech enhancement methods
such as Wiener filter, the minimum variance distortionless
response (MVDR) or linearly constraint minimum variance
(LCMV) beamformers are highly sensitive to the accurate
estimation of PSD matrix; the more accurate PSD matrix the
more effective performance can be achieved.

The effect of speech PSD matrix error in multichannel
Wiener filter (MWF) was examined in [1] in the noise reduc-
tion application. In [2], a recursive smoothing method, based
on the linear combination of PSD matrix at previous frames
was presented. This technique is commonly used in speech
enhancement algorithms. In this method, a forgetting factor
controls the effect of consecutive frames. The proper choice
of this parameter has been the subject of many researches;
in [3], the forgetting factor is was tuned based on speech
presence probability (SPP) in each time-frequency unit. In
[4], a recursive smoothing method for noise PSD matrix
estimation was introduced which uses current, previous and
close subsequent noisy speech frames; the forgetting factor is
iteratively updated based on the overall signal to noise ratio
(SNR) in all microphone signals.

In recent years, the problem of inter-frame and inter-band
correlation has received much attention. In [5], a multi-frame
approach was proposed for noise reduction in the short time

Fourier transform (STFT) domain. The authors took inter-
frame correlation into account and proposed several optimal
filters which improve the SNR.

The inherent harmonics of voiced speech and the windowing
process which is commonly used in the STFT processing
introduce some correlation between neighbor frequency com-
ponents [6]. Accordingly, the effect of inter-band and inter-
frame correlation has been utilized in many speech-related
applications. In [7], a multi-dimensional short time spectral
amplitude (STSA) estimator was proposed for speech en-
hancement that considers the correlation between frequency
components. In [8], the inter-band correlation was considered
to propose a single channel noise reduction filter in the STFT
domain. Also, in [9] the authors proposed a single channel SPP
estimation method based on both inter-frame and inter-band
correlations to increase the detection accuracy. In each time-
frequency unit, they used a vector containing the components
of the adjacent frames and frequencies to compute the SPP
similar to the one presented in [10].

Previous works for PSD matrix estimation consider only
the information of inter-frame correlations. To estimate the
PSD matrix more accurately, in the current work, we propose
and examine the effect of both inter-band and inter-frame
correlations. To this end, the PSD matrix is computed in three
steps; first, for each time-frequency unit, we compute an initial
matrix using the common method presented in [2]. In the
second stage, we apply the effect of inter-band information
by applying a mapping matrix [11]; the resulted matrix is
called transformed matrix. Eventually, the final PSD matrix
is computed by a linear combination of the initial and the
transformed matrix.

Furthermore, we utilize the modified (improved) PSD ma-
trix to improve the accuracy of SPP (as introduced in [10]).
Then, we incorporate the SPP to improve the performance
of Parametric multichannel Wiener filter (PMWF) [12]. In
traditional PMWF, which employs a fixed parameter, noise
reduction comes at the cost of signal distortion. In this paper,
we propose an adaptive parameter based on the SPP to achieve
a better balance between noise reduction and speech distortion.

This paper is organized as follows. After formulating the
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problem in section II, the proposed method is introduced in
section III. In section IV, we review the employed method for
the estimation of mapping matrix. Section V explains the effect
of the proposed PSD matrix estimation in the computation of
SPP and in the speech enhancement system. Sections VI and
VII consist simulation results and conclusions, respectively.

II. PROBLEM FORMULATION

Consider an N -element microphone array which captures
the source signal in a noisy field. We assume that the received
signal is corrupted by uncorrelated additive noise. In the STFT
domain, the received signal can be expressed as

Yn(m, k) = Gn(k)S(m, k) + Vn(m, k)

= Xn(m, k) + Vn(m, k),
(1)

where Yn(m, k), Gn(k), S(m, k), Vn(m, k) and Xn(m, k)
are the nth microphone signal, the impulse response from the
source to the nth microphone, the source signal, the additive
noise and the clean source signal at the nth microphone
at time-frame m and discrete-frequency k, respectively. We
assume that the noise and source signals are zero mean random
processes.

The output of microphone array can be written as

y(m, k) = g(k)S(m, k) + v(m, k), (2)

where

y(m, k) = [Y1(m, k), Y2(m, k), ..., YN (m, k)]T

g(k) = [G1(k), G2(k), ..., GN (k)]T

v(m, k) = [V1(m, k), V2(m, k), ..., VN (m, k)]T

x(m, k) = [X1(m, k), X2(m, k), ..., XN (m, k)]T

and the superscript T denotes the transpose operation.
In this research, our goal is to estimate the output PSD

matrix at each time-frequency unit, i.e.,

Ryy(m, k) = E
{
y(m, k)yH(m, k)

}
= g(k)Rss(m, k)g

H(k) + Rvv(m, k)

= Rxx(m, k) + Rvv(m, k)

(3)

where Rss(m, k) is the variance of the source signal and
Rvv(m, k) and Rxx(m, k) are the PSD matrices of the noisy
and clean signals, respectively. The superscript H represents
transpose-conjugate operation.

In the state-of-the-art methods [2], the output PSD matrix
is computed recursively by using the information of previous
frames and a forgetting factor as

Ryy(m, k) = λRyy(m−1, k)+(1−λ)y(m, k)yH(m, k)
(4)

where λ is the forgetting factor.
Assuming the pseudo-stationarity of noise PSD, we can

update the noise PSD matrix by applying (4) on silent frames.
Consider that noise and source signals are uncorrelated, the
PSD matrix of clean signal can be computed as

Rxx(m, k) = Ryy(m, k)−Rvv(m, k). (5)

III. PROPOSED METHOD FOR THE ESTIMATION OF
POWER SPECTRAL DENSITY MATRIX

In this section, we present a new method for estimating
the PSD matrix that considers the correlation of both inter-
frame and inter-band components. In the proposed method, an
initial PSD matrix is computed using (4); then we consider the
frequency correlation between the previous band and current
one. This process can be explained as follows by considering
Fig. 1.

Fig. 1: Time and frequency illustration for computing PSD
matrix

Since the signal subspace at each frequency is different from
that at another frequency, it is not possible to simply add
two PSD matrices of different frequencies directly. We use
a mapping matrix to transform the PSD matrix from previous
band to the current one; the result is called transformed matrix.
After this transformation, we can combine the initial and the
transformed matrix linearly to compute the final matrix.

The PSD matrix at time-frame m and discrete-frequency k
is estimated in the following steps:
1) The initial PSD matrix is computed using (4)

Ryy,init(m, k) =

λRyy,final(m− 1, k) + (1− λ)y(m, k)yH(m, k) (6)

where Ryy,final(m− 1, k) is the final computed PSD matrix
at time-frame m− 1 and discrete-frequency k.
2) We apply mapping matrix T (explained more in next
section) to transform the final computed matrix at the time-
frame m and discrete-frequency k − 1 to the current time-
frequency unit. The result is

Ryy,trans(m, k) = TRyy,final(m, k − 1)TH . (7)

3) In the last step, we compute the final PSD matrix at time-
frame m and discrete-frequency k as a linear combination of
the initial and transformed matrices using the relaxation term
γ:

Ryy,final(m, k) =

γRyy,trans(m, k) + (1− γ)Ryy,init(m, k). (8)

IV. MAPPING MATRIX ESTIMATION

In order to transform the PSD matrix from one frequency
band to another one, a mapping matrix is employed. We use
rotational signal-subspace (RSS) mapping matrix [11] that has
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been presented in [13] for coherent signal subspace method
(CSSM) in wideband direction of arrival (DOA) estimation.
In a similar manner, in the current work, we apply the RSS
matrix to transform the PSD matrix from the previous band to
the current one as seen in (7). The mapping matrix is obtained
as the solution of

T = argmin
T
‖Tg(k − 1)− g(k)‖F s.t. THT = I, (9)

where ‖·‖F is the Frobenius matrix norm, and I is the identity
matrix. The solution has been given in [11] as

T = VUH . (10)

Using the singular value decomposition, the unitary matrices
V and U and diagonal matrix Σ are obtained such that

g(k − 1)gH(k) = UΣVH . (11)

V. ADAPTIVE PARAMETRIC MULTICHANNEL WIENER
FILTER

In this section, we firstly employ the proposed PSD estima-
tion technique to increase the accuracy of SPP. We consider the
SPP estimation method that introduced in [10] and expressed
as

p = {1 + q

1− q
[1 + ζ]exp[− β

1 + ζ
]}−1, (12)

where

ζ = trace{R−1
nn(m, k)Rxx(m, k)}

β = yH(m, k)R−1
nn(m, k)Rxx(m, k)R

−1
nn(m, k)y(m, k).

and q denotes the priori speech absence probability (SAP).
In the next step, we incorporate the above-mentioned SPP

estimator in the PMWF for speech enhancement. The cost
function of PMWF is defined as:

ε(m, k) = [E− h(m, k)]HRxx(m, k)[E− h(m, k)]

+ µhH(m, k)Rnn(m, k)h(m, k).
(13)

Considering the first microphone as a reference, E =
[1, 0, · · · , 0]H , h(m, k) is the filter coefficients and µ is the
PMWF parameter. The first term of (13) is considered as a
measure of the signal distortion and the second term as the
noise reduction.

Filter coefficients are calculated as below [12]:

h(m, k) =
R−1

nn(m, k)Rxx(m, k)

µ+ trace(R−1
nn(m, k)Rxx(m, k))

. (14)

In the special case that µ = 0, PMWF is equivalent to MVDR;
also, when µ = 1, it is equivalent to multichannel Wiener
filter. In order to better moderate the trade-off between signal
distortion and noise reduction, an adaptive parameter based
on the SPP is introduced. To this end, the cost function is
reformulated as

ε(m, k) = µ(p(m, k))hH(m, k)Rnn(m, k)h(m, k)

+[1−µ(p(m, k))][E−h(m, k)]HRxx(m, k)[E−h(m, k)],
(15)

where p(m, k) is the SPP parameter.
In each time-frequency unit where p(m, k) = 0, there exist

only noise components; so, we set µ(p(m, k) = 0) = 1.
Remaining only the first term in (15), we can deal with
noise reduction without worrying about signal distortion. On
the other hand, where p(m, k) = 1, there exist speech
components; it is more sensible to reduce signal distortion but,
we prefer to keep a little noise to avoid musical noise. Hence,
we set µ(p(m, k) = 1) −→ 0 which leads to minimizing the
signal distortion and increasing intelligibility. For this purpose,
we need a smooth and decreasing function based on the SPP.
Accordingly, an exponential function is suggested as below:

µ(p(m, k)) = exp(−0.5 ∗ p2(m, k)) (16)

VI. SIMULATION RESULTS

In this section, we compare the performance of the proposed
PSD estimation method with the traditional one which utilizes
only the inter-frame correlation in (4). The effect of PSD
estimation method in the performance of MVDR beamformer
has been examined for different types of noise and echo
conditions.

In this simulation, speech signal samples are taken from
TIMIT database [14]. The sampling frequency is 16 kHz and
the STFT is implemented using 32 ms Hamming window
with 50% overlap. The room dimensions are considered 3m×
4m × 2.5m (width×length×height). A uniform linear array
(ULA) of N = 5 microphones are placed on the axis (xn =
xinit+(n−1)d, y = 2 m, z = 1.3 m), n = 1, · · · , 5, where
xinit = 1 m and d = 0.05 m. The source signal is located
at (x = 1.9 m, y = 2.77 m, z = 1.3 m). It is assumed
that the microphone signals are corrupted by additive noise at
different SNRs. The image method [15] was used to generate
the impulse response from the source to the microphones.

Considering ideal voice activity detection and performing an
empirical analysis, it was observed that the best performance
is achieved by choosing λ = 0.998 and γ = 0.96.

We use a recursive smoothing method both in time and
frequency domain which yields more accurate PSD matrix.
It is noted that in the case of colored noise, we update
only the PSD matrix of noisy data Ryy(m, k) according to
(4), but in the presence of white Gaussian noise, the PSD
matrices of both noisy data Ryy(m, k) and noise Rnn(m, k)
are updated. Actually, the spectrum of white noise has the
same amplitude over all frequencies, which justifies correlation
between frequency components.

The performance of the proposed and traditional PSD matrix
estimation are compared in speech enhancement applications
in terms of two objective measures, namely PESQ and seg-
mental SNR. In this experiment, we use speech samples from
four male and four female speakers and report the average
comparative results.

In Fig. 2 and Fig. 3, we depict the PESQ value at different
input SNRs for different kinds of noise in anechoic and
reverberant condition (RT60 = 200 ms), respectively. It is
seen that the proposed method outperforms the traditional one
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Fig. 2: PESQ at different input SNRs for MVDR beamformer,
comparing the traditional and proposed method in anechoic
condition.
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Fig. 3: PESQ at different input SNRs for MVDR beamformer,
comparing the traditional and proposed method in reverberant
condition (RT60 = 200 ms).

in all input SNR values. The proposed method has drastically
improved the PESQ. This can be justified by considering the
effect of inter-band correlation in PSD matrix estimation.

The superiority of the proposed method is much more
evident in the case of colored noises (compared to that in
the case of white noise). This can be justified by considering
that both the speech and the colored noise (e.g. pink noise)
have similar lowpass spectra; so, the traditional PSD matrix
estimators fail to perform correctly, especially in low SNRs.

Also, Fig. 4 and Fig. 5 shows the segmental SNR value at
different input SNRs for different kinds of noise in anechoic
and reverberant condition (RT60 = 200 ms), respectively.
Results demonstrate the performance improvement obtained
by the usage of proposed method for PSD estimation.

Fig. 6 and Fig. 7 illustrate the spectrograms of sample clean
data at the first microphone, noisy data at SNR = 10 dB,
the enhanced signal (output of MVDR beamformer) with
the traditional PSD matrix estimation method, and with the
proposed PSD matrix estimation method, in the case of white
Gaussian noise and factory noise respectively. It is seen that
incorporating the inter-band correlations, the proposed PSD
estimation method considerably improves the performance of
speech enhancement. The noise is significantly reduced while
the speech is not substantially distorted.

Furthermore, we utilized the proposed PSD estimation tech-
nique to increase the accuracy of SPP in (12). We suppose
that priori SAP is a fixed parameter (e.g., q = 0.6 as in
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Fig. 4: Segmental SNR at different input SNRs for MVDR
beamformer, comparing the traditional and proposed method
in anechoic condition.
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Fig. 5: Segmental SNR at different input SNRs for MVDR
beamformer, comparing the traditional and proposed methods
in reverberant (RT60 = 200 ms).

[10]). We incorporate the SPP to improve the trade-off between
noise reduction and speech distortion in PMWF. In Fig. 8, the
PESQ values at different input SNRs for fixed parameter-based
PMWF and adaptive parameter based on (16) in the presence
of white Gaussian noise in anechoic condition are depicted.
In contrast to the fixed parameter-based PMWF, where noise
reduction introduces speech distortion, an adaptive parameter-
based PMWF leads to a better trade-off and consequently more
improvement in intellegibility and PESQ, especiallly in high
SNRs.

VII. CONCLUSION

In this paper, the inter-band correlation was considered in
the estimation of PSD matrix. We took this correlation into
account and applied a mapping technique that had already been
used for coherent signal subspace methods. We utilized this
method to transform PSD matrix into different frequencies.
The final PSD matrix was computed as the linear combination
of the transformed and initial matrices. We examined the effect
of PSD estimation technique in the speech enhancement appli-
cation using MVDR beamformer. It was shown that the PESQ
and segmental SNR parameters are improved by exploiting
both inter-band and inter-frame correlations. Simulation results
confirm the superiority of the proposed method over the
traditional method for PSD matrix estimation as well.
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Fig. 6: Spectrograms of (a) clean, (b) noisy data, (c) enhanced
signal using the traditional method and (d) enhanced signal
using the proposed method for PSD matrix estimation in the
case of white Gaussian noise.
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Fig. 7: Spectrograms of (a) clean, (b) noisy data, (c) enhanced
signal using the traditional method and (d) enhanced signal
using the proposed method for PSD matrix estimation in the
presence of factory noise.
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