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Abstract—In this paper we present a method for volumetric
segmentation of retinal vessels based on 3D OCT images of
human macula. The proposed hybrid method is comprised of two
steps: detailed extraction of superficial blood vessels indicators
visible in 2D projection of retina layers followed by an axial
inspection of inner retina to determine exact depth position
of each vessel. The segmentation procedure is improved by
application of block-matching and 4D filtering (BM4D) algorithm
for noise reduction. The 3D reconstruction of vascular structure
was performed for 10 normal subjects examined with Avanti
AngioVue OCT device. The automated segmentation results were
validated against the manual segmentation performed by an
expert giving the accuracy of 95.2%.

Keywords—retina vessels segmentation, fundus reconstruction,
optical coherence tomography (OCT), 3D visualization

I. INTRODUCTION

A comprehensive analysis of three-dimensional (3D) human
retina biometric characteristics is considered essential for
proper diagnosis of retinal diseases. One of the important
diagnostic tasks is segmentation of blood vessels. Detailed
segmentation of retinal vascular network from OCT images
have multiple applications including: detection and assessment
of various retinal diseases including those affecting the vessels
directly [1], atlas generation, taking account of vessel influ-
ence in thickness measurement. Vessels segmentation is also
frequently performed in order to align multiple retinal images
e.g. acquired at various points (like macula and optic nerve
head), during multiple clinical visits, with different devices or
even with different imaging modalities [2].

Retina vessels segmentation is typically based on images
acquired by 2D fundus camera, which requires an unpleasant
strong flash of light and takes advantage of high contrast and
resolution of the image [3]. While fundus image gives only 2D
information about vessels structure, the spectral domain optical
coherence tomography (SD-OCT) — a non-invasive imaging
technique — provides volumetric analysis of the examined
tissue. An example of a 3D scan through the macula is shown
in Fig. la. Such volumetric scan consists of a set of cross-
sections (i.e. B-scans) and each B-scan is composed of a series
of A-scans (see Fig. 1a). In the OCT B-scan it is possible to
distinguish silhouettes of blood vessels that appear below the
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(b) fundus projection

(a) OCT volume

Fig. 1: Example of macular 3D OCT examination

vessels [4]. It is caused by absorption of light by the red cells
and leaving dark shadows in the underlying layers. Projection
of data averaged in the axial direction allows for a simplified
reconstruction of the fundus image with vessels as illustrates
Fig. 1b. Another indicator of the vessels presence is thickening
of retinal nerve fiber layer (NFL) [5]. This information can be
used for extraction and parameterization of vasculature.

This possibility was further improved with introduction
of optical coherence tomography angiography (OCTA). This
technology uses special scan acquisition protocols and ad-
vanced image processing algorithms to segment three vascular
plexuses of the retina (superficial, deep and choroidal) and
visualize vessels as 2D projections [6]. It should be noted,
that nowadays the OCT angiography is not so popular yet and
majority of the currently used OCT devices is not equipped
with this function. It is not possible to evaluate disease
evolution with respect to previously acquired scans. Non-
angio algorithms for vessel structure determination can be
used to analyze such historical data. Furthermore, the OCTA
technique, based on decorrelation algorithm to find blood flow,
fails to detect the blocked or obstructed blood vessels.

Automatic segmentation of vessels is not commonly avail-
able since algorithms have to overcome image processing
problems such as: speckle noise, low/uneven data resolution
and contrast, crossing of vessels in the axial direction. Addi-
tionally, even modern OCT devices do not provide a 3D model
or visualization of retina vascular network.
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A. State of the art

Standard segmentation techniques designed for color fundus
images have very low accuracy when applied to OCT images
(as will be further shown in Section IIIB). Vessel segmentation
techniques based on SD-OCT volumes may be classified into:

o nonhybrid methods — dependent only on information
from a single OCT examination. This group includes
methods based on a supervised k-NN pixel classifica-
tion of a 2D projection acquired from an automatically
segmented retina region [4]. Another classification-based
approach utilized training on A-scans characterized as
vessel and non-vessel proposed by Xu et al. [7], further
extended to 3D boosting learning algorithm utilizing 2D
features from the reconstructed OCT fundus image and a
Haar-feature calculated from each A-scan [8].

The first 3D vessel segmentation was performed by Hu
et al. [9] with the use of a 3D graph-based approach.
However, the volumetric segmentation was only based
on a projection image and did not include information
about vessels position in the vertical direction.

Pilch et al. presented a two-step procedure that consists
of defining the vessels positions in the lateral direction
based on a shadowgraph and using an active shape model
to label these contours in the third direction [10].
Kafieh et al. introduced information of RNFL thickness
and shadow position into vessels segmentation procedure
[11]. They improved overall accuracy by combining ves-
sels detection based on curvelet transform of 2D OCT
projection with their innovative approach.

hybrid methods — multimodal solutions that implement
both OCT data and scanning laser ophthalmoscopy (SLO)
or fundus images. Hu et al. presented a method based on
k-NN pixel classification to segment vessels around the
Nerve Canal Opening (NCO) using fundus images and
3D OCT scans [2]. A multimodal approach for vessel
segmentation of macular OCT slices along with the SLO
image based on brightness variations and curvelet image
analysis was proposed by Kafieh et al. [12].

methods based on multiple OCT examination (OCTA)
— de-correlation algorithm performed on several sub-
sequent OCT examinations. OCTA takes advantage of
differences in the backscattered OCT signal between
sequential B-scans taken at the same location [13].
Movement of blood between repeated examination is
calculated using split-spectrum amplitude-decorrelation
algorithm (SSADA) [6]. It allows for imaging retina vas-
culature divided into three sections: superficial, deep and
choroidal. Unfortunately, this technique although having
high potential in vascular disease diagnostics requires
special acquisition protocol, higher imaging speed and
has lower field of view to achieve high density data
in a fixed acquisition time of several seconds. As was
mentioned earlier, it is available with the newest OCTA
devices only, and it provides projections of each retina
section instead of a 3D visualization.
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II. VESSELS SEGMENTATION FROM 3D OCT
A. Morphology-based OCT analysis

In our method we focus on the inner retina vessels located
in the ganglion cell layer (GCL) [14]. Fig. 2 shows an example
of a single OCT cross-section with corresponding projection
images of the GCL and RPE layers obtained from a 3D scan
of a healthy 28-year old volunteer. The horizontal lines in the
projection images (Fig. 2a and Fig. 2c¢) indicate location of
the illustrated B-scan (Fig. 2b). Blue, red and green curves in
the B-scan represent upper and lower boundaries of the GCL
and RPE layers respectively.

As can be seen in Fig. 2b bright areas between GCL
boundaries mark positions of superficial vessels, while dark
areas between RPE layer boundaries mark shadows of those
vessels. It is worth mentioning that not all vessels present in
the GCL have shadows in the RPE projection or their shadow
is very weak (see vessels number 2 and 7), and not all shadows
visible in the RPE represent vessels located in the GCL (see
shadow number 9).

From the detailed analysis of 3D OCT scan it can be stated
that vessel segmentation based only on shadow detection leads
to erroneous results. In order to perform precise segmentation
we search for the vessels themselves instead of their indicators.
We propose a hybrid algorithm that detects superficial vessels
incorporating local brightness variations wih focusing on inner
retina areas. The general scheme of the proposed solution is
illustrated in Fig. 3.

B. Preprocessing

Prior to applying image analysis algorithm we perform
noise reduction as a pre-processing procedure. Our previous
research showed that both anisotropic diffusion and wavelet-
based approaches give good results for improving quality and
preserving structural characteristics in OCT images [15]. In

(b) B-scan image with segmented GCL and RPE layers

8 15
J

|1

5.6 10

(c) Fragment of a RPE layer projection image

Fig. 2: Example of B-scan image with corresponding projec-
tions of segmented GCL and RPE layers
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Fig. 3: General scheme of the algorithm

the following experiments we used block-matching and 4D
filtering (BM4D) algorithm proposed by Maggioni et al. [16].
This is a novel method incorporating collaborative Wiener
filtering of a 3D data, that provides very good denoising
effectiveness for medical images.

Since detection of vessels in the next steps is narrowed
to specific retina layers, the preprocessing step includes also
segmentation of upper and lower boundaries of 2 retina layers:
GCL and RPE. We segment those layers using our modified
graph theory-based approach [17].

C. Segmentation of superficial retina vessels

1) Shadowgraph-based approach: Since thicker vessels,
that lie in the GCL layer, can cause lower illumination re-
sponse of outer retina layers, the majority of methods proposed
so far are those based on shadow detection for lateral vessels
segmentation. A very fast and robust method for calculation of
lateral vessel position is based on shadowgraph — a function
of the B-scan column-wise intensity values. The region of
intereset for this procedure vary between algorithms. We tested
three approaches: two from references [10], [18] and our
solution. The main features of these approaches are as follows:

o shadowgraph s; computed for the width of the B-scan as
a sum of intensities of image I(x, z), where  denotes the
index in transversial direction and z is index in the axial
direction [18]. The calculation includes only the region
below inner retina (up to the segmented outer segments
border L;5/0s) and can be described by

Lrs/os(z)

>

z=0

= I(z,2) (D

s1(x)

shadowgraph ss created by calculating grey-level centers
of each A-scan, where h describes the vertical resolution
of the B-scan image [10]:

h—1
zxI(z,2)
z=0

h—1
> I(z,2)
z=0

= 2)

sa(x) =

shadowgraph constructed as a function of the normalized
projections of GCL and RPE layers as describe (3)—(5).
Taking into account intensities of tissue reflectance in
the GCL layers allows for emphasizing those vessels
that exist in the superficial vascular complex and are too
small to leave a significant shadow trace. The influence
of shadows can be weighted by parameters w; and ws.
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The parameter € € (0, 1) is used for enhancing intensity
values of the projections.

[ & <o) Pos—rrE e (3)
3 1max(PGCL) 2maalc(Pos_RpE)
Locryrpr(x)
Poer(w,2)= > I(x2), 4
z=Lipr/inL(x)
Lrpe/our(®)
Pos_grpe(z,2)= Y. I(x,2) 5)

z=Lis/os(x)

Each calculated shadowgraph is subjected to smoothing
(using Savitzky-Gola filter, length = 3, weighing factor = 21),
removing low freqency component and normalization. Next,
the obtained shadowgraphs are thresholded with a parameter
t; € (—1,1) to detect the vessels. Figs. 4a-4c present shad-
owgraphs calculated for the image in Fig. 2b using ¢; = 0.4.

Such pre-segmented vertical sections are next evaluated in
axial direction to obtain full volumetric structure. The search
was performed between upper and lower boundaries of the
GCL using adaptive binarization approach with threshold 5.

(a) shadowgraph obtained from summarized axial intensity values of
the outer retina [18]

e e - S T B
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(b) shadowgraph obtained from axial grey-level centers [10]

(c) shadowgraph obtained from normalized layers projections

Fig. 4: Example of lateral vessels segmentation: B-scan image
with overlayed shadowgraph (red curve) and detected shadow
regions (blue vertical lines) for each the evaluated method
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(a) Shadowgraph-based method

(b) Volumetric adaptive binarization method

Fig. 5: GCL section of B-scan image with manualy segmented
vessels (white areas) and borders of automatically segmented
vessels (denoted in red)

Fig. 5a illustrates effect of this procedure using shadow-
graph s3 with parameters w; = 1.1, wy = 0.8, and € = 0.5.
White spots depict manualy segmented vessels, the detected
vessel areas are enclosed with red circles. The threshold was
selected as 0.05 over a median value of the analyzed shadow-
defined image region. All vessels are correctly identified in
their volumetric space. The vessel number 9 was correctly
detected near the lower boundary of GCL.

2) Volumetric adaptive binarization-based approach: As
was indicated in Fig. 3 the shadowgraph calculation can be
ommited. In this case the adaptive binarization is performed
directly on volumetric data in the area of GCL and does not
rely on indicators such as shadows. First, the area between
upper and lower boundaries of GCL is extracted, then we
calculate the median value of pixels in this area and perform
thresholding, leaving out pixels of intensities lower than the
selected treshold ¢3. Fig 5b illustrates a result of this approach
for t3 = 0.15. This method gives narrower detection of vessels,
than the methods based on the shadowgraph.

III. EXPERIMENTS AND RESULTS
A. Data and processing

The reconstruction of vascular network was performed
for 10 normal subjects examined with Avanti AngioVue de-
vice (Optovue Inc., USA). The volumetric scan consisted
of 304x304x640 data points representing 3x3x2 mm of
tissue what gives an axial resolution of 3.1 ym and transversal
resolution of 9.9 um. The experiments were performed in
Matlab/Simulink environment on raw data exported from OCT.

B. Vessels detection in the lateral direction

We evaluated precision of the methods based only on the
shadow detection ([10], [18]) and compared them to our two
proposed solutions as well as to the line tracking method de-
signed for color fundus images [19]. First experiment was set
to evaluate the accuracy of vessels segmentation in the lateral
direction. Table I presents results of this experiment. It can be
derived that shadowgraph s; provides better segmentation ac-
curacy than shadowgraph sy, and both of our approaches give
better results, although the volumetric adaptive binarization
method has the best performance. The line tracking method
has very low accuracy and cannot be utilized for OCT images
without considerable adjustments.
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TABLE I: Results of lateral segmentation procedure for su-
perficial vessels complex

H Method H Accuracy [%] ‘ Precision [%] ‘ Specificity [%] H
Shadowgraph s 92.9 53.7 95.1
Shadowgraph sa 90.0 34.6 95.0
Shadowgraph s3 94.8 75.2 98.6
Volum. adapt. bin. 95.2 78.7 98.8

Line tracking 27.6 8.7 222

(d) Volumetric adaptive binariza-
tion

(c) Shadowgraph s3

Fig. 6: Projections of detected superficial vessels

The parameters for shadowgraph s; were selected empir-
ically for one volumetric scan and gave the best accuracy
for values: wy = 1.2 and wy = 0.7 and ¢ 0.5. We
tested thresholds ¢, and t3 for adaptive binarization steps
in the range of (0,0.5). The best results were obtained for
t1 = 0.42, t5 = 0.43 and t3 = 0.14. Examples of binary
representations of segmented vessels for each tested method
illustrates Fig. 6. As can be seen from Fig. 6d the volumetric
adaptive binarization method preserves connections between
branches, what is important for clinicians. Fig. 7 presents
Receiver Operating Characteristic of lateral segmentation.

C. Vessels detection in 3D

The second experiment was focused on the analysis of the
algorithm accuracy for segmenting volumetric data. The test
was performed by binary comparizon of reference data with
automatically calculated vessels network. Table II presents
results of this experiment. The volumentric approach gives
the best results here as well.
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Fig. 7: ROC curves of lateral segmentation procedure

TABLE II: Results of volumetric segmentation procedure

H Method H Accuracy [%] ‘ Precision [%] ‘ Specificity [%] H
Shadowgraph s 99.91 24.94 99.93
Shadowgraph sa 99.90 20.77 99.93
Shadowgraph s3 99.90 27.25 99.93
Volum. adapt. bin. 99.95 44.86 99.98

IV. CONCLUSIONS

We presented a method for volumetric segmentation of
retina vasculature. This algorithm is useful for evaluation of
disease history of the patients examined prior to development
of the OCTA technology as well as for detection of obstructed
blood vessels undetected by OCTA. This approach can also
be used for the analysis of large, older datasets of OCT scans
obtained with standard acquisition protocols.

Segmentation methods based only on detection of vessels
shadow are able to segment only thick superficial vessels,
since thinner vessels do not leave a significant shadow trace.
Furthermore the approaches detecting shadows in the RPE
layer have larger error rate for volumetric segmentation due
to erroros in the lateral direction.

Our adaptive binarization approach allows for detection of
vessels crossing each layer (e.g. from superficial to deep vessel
bed). It also preserves connections between branches what is
important for ophthalmologists. It is possible to extend the
presented algorithm to a three-dimensional hierarchic vascu-
lature model, that can be further used in diagnostic procedures,
such as evaluation of blood flow and analysis of retina vessels
structure with respect to pathological changes among layers.

Out future research will involve further improvements,
application of the developed methods to the deep vessels bed,
and comparison with other state of the art methods for vessels
detection from OCT (such as k-NN pixel classification).
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