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Sparsity-based Direction of Arrival Estimation in
the Presence of Gain/Phase Uncertainty

Fatemeh Afkhaminia, ∗Masoumeh Azghani

Abstract— Estimating the direction of arrival (DOA) in sensor
arrays is a crucial task in array signal processing systems. This
task becomes more difficult when the sensors have gain/phase
uncertainty. We have addressed this issue by modeling the
problem as a combination of two sparse components, the DOA
vector and the gain/phase uncertainty vector. Therefore, a sparse
decomposition technique is suggested to jointly recover the DOAs
and the sensors with gain/phase uncertainty. The simulation
results confirm that the suggested method offers very good perfor-
mance in different scenarios and is superior to its counterparts.

Index Terms—sparsity, DOA estimation, gain/phase uncer-
tainty

I. INTRODUCTION

Direction Of Arrival (DOA) estimation is an important task
in array signal processing and it has been used in different
industries such as sonar [1], radar, wireless communications,
seismic sensing [2], and radio astronomy [3]. The aim of DOA
estimation is to estimate the angle of arrival of signals on an
antenna array to increase the sensitivity of the system or enable
adaptive beamforming of the antenna pattern. The MUSIC and
ESPRIT methods are the conventional decomposition-based
DOA estimation techniques [4], [5], [6]. These methods need
a considerable number of snapshots to estimate the covari-
ance matrix correctly. The main issue with the conventional
methods is that they need a prior knowledge of the number of
sources. By the development of sparse signal processing [7]
and compressed sensing [8]–[10], advanced DOA estimation
techniques have been suggested in the literature. The advan-
tages of these techniques include their robustness against noise
and computational efficiency. The L1-SVD and SPICE are
common sparsity-based methods. The L1-SVD method applies
L1-norm minimization to reconstruct the sparse DOA signal
[11]. The sparse iterative covariance-based estimation (SPICE)
method is acquired by the minimization of a covariance matrix
fitting criterion [12]. The sparse spatial spectral estimation
(SpSF) technique estimates the DOA of multiple sources using
the sparsity of the spatial covariance matrix [13]. In [14], a
sparse reconstruction method is proposed for DOA estimation
with the aid of active nonuniform array. These methods have
good performance in ideal conditions but in actual arrays there
are some errors in the array that degrade the performance
of the DOA estimation methods. One of such issues is the
gain/phase uncertainty of the antenna array. In [15], a method
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has been suggested for DOA estimation in the presence of
gain/phase uncertainty. In this paper, we address the same issue
by another modeling. Using the fact that only a few of the array
sensor elements may have gain/phase uncertainty, and also the
point that we have small number of targets, we consider the
sparsity property for the gain/phase uncertainty as well as the
DOA signal. A jointly sparse recovery method is suggested to
estimate the DOAs and the gain/phase uncertainty values of the
array elements. The performance of the proposed method has
been evaluated in different scenarios. The simulation results
confirm the superiority of the suggested scheme over its
counterparts.

The rest of the paper is organized as follows: In section
II, we present the modeling of the DOA estimation problem.
The proposed DOA estimation method is illustrated in section
III. Section IV includes the simulation results and Section V
concludes the paper.

II. SYSTEM MODEL

In this section, we describe the DOA estimation problem.
We consider an M-element linear array with uniform inter-
element space of d = λ/2 where λ is the wavelength. P signals
emitted from P sources impinge on a sensor array. The distinct
arrival angles are represented as θp . The received signal at
time t can be expressed as follows:

x(t) = A(θ)s̃(t) + n(t) (1)

where s̃(t) = [s̃1(t), · · · , s̃P (t)]T denotes the signal vector
generated by P sources and n(t) = [n1(t), · · · , nM (t)]T

is the noise vector and x(t) = [x1(t), x2(t), · · · , xM (t)]T

is the recieved signal vector in the sensor array. A(θ) =
[a(θ1), · · · ,a(θP )]M×P is the steering matrix where a(θp) =
[1, e−j

2π
λ d sin(θk), · · · , e−j 2π

λ (M−1) sin(θp)]T . To express the
DOA estimation problem in the sparse domain, the an-
gular range is discretized with J uniform samples such
that J >> P . Therefore, the extended steering matrix Ψ
denotes a dictionary matrix that contains all the possible
directions corresponding to the discretized angles: Ψ =
[a(θ1), · · · ,a(θJ)]M×J Where θj = 180j/J, j = 1, · · · , J .
The DOA problem (1) can be represented as:

x(t) = Ψs(t) + n(t) (2)

where s(t) is a J×1 vector where its qth element is non-zero
if θq = θp. This problem formulation is appropriate for the
ideal case where there is no error in the sensor array. In the
case that we have some gain/phase uncertainties in the sensor,
we need to have a more correct modeling which would be
presented in the next section.
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III. THE PROPOSED METHOD

In this section, we illustrate the proposed method. To have a
clear modeling of the DOA estimation problem in the presence
of gain/phase uncertainty, we consider a matrix for describing
the gain/phase uncertainty effect. The gain/phase uncertainty
matrix is an M ×M diagonal Matrix G′ = diag(g) where
gi = 1+∆gi and ∆gi indicates for the gain/phase uncertain-
ties of the sensors. Therefore, the array received signal will
be described as:

x(t) = G′Ψs(t) + n(t) (3)

For a perfect sensor i, the gain/phase uncertainty is zero,
∆gi = 0. The matrix G′ can be written as:

G′ = I + G (4)

Similar to (2), we can rewrite (3) in the form of the
dictionary Ψ (the extended steering matrix) as:

x = Ψs + v + n (5)

We have omitted the time variable, t, in the above relation
where

v = GΨs (6)

We use the fact that only a few of the antenna elements
may have gain/phase uncertainty. Therefore, the matrix G
would have a few non-zero diagonal entries. Considering this
property and (6), the vector v would be sparse such that:

support(v) ⊂ support(diag(G)) (7)

Moreover, since only P entries of s corresponding to the target
angles are non-zero, the vector s would be sparse. Utilizing
the sparsity of v and s, we formulate a jointly sparse DOA
estimation problem as:

min ‖x−Ψs− v‖22 + λ1‖s‖1 + λ2‖v‖1 (8)

In order to solve the above optimization problem, we
introduce an auxiliary variable, z, and apply the ADMM
technique:

min ‖x−Ψs− v‖22 + λ1‖z‖1 + λ2‖v‖1
subject to z = s

(9)

The auxiliary variable enables us to decompose the problem.
The augmented lagrangian function is obtained as:

L(z, s,v,Λ) =

‖x−Ψs− v‖22 + λ1‖z‖1 + λ2‖v‖1 + ρ/2‖z− s + Λ/ρ‖22
(10)

where Λ is the dual variable. The first step of the algorithm is
obtained by minimizing the lagrangian function with respect
to s. Therefore, we have:

∂L

∂s
= 0⇒ sk+1 = (2ΨTΨ+ρI)−1(ρzk+2ΨT (x−vk)+Λk)

(11)
The second step would be to minimize the lagrangian function
with respect to the auxiliary variable z which yields:

∂L

∂z
= 0⇒ zk+1 = shrink(sk+1 − Λk

ρ
,
λ1
ρ
) (12)

where the shrinkage function is defined as:

shrink(w, τ) =


w − τ w > τ

w + τ w < −τ
0 otherwise

(13)

The third step of the suggested scheme is derived by the
minimization with respect to v:

∂L

∂v
= 0⇒ vk+1 = shrink(x−Ψsk+1,

λ2
2
) (14)

The last step would be updating the dual variable:

Λk+1 = Λk + ρ(zk+1 − sk+1) (15)

The details of the proposed iterative method are given in
Algorithm 1.

Algorithm 1 The proposed algorithm
1: input:
2: The steering matrix Ψ ∈ CM×J .
3: The received signal vector x ∈ RM×1.
4: The maximum number of iterations itermax.
5: output:
6: The estimated DOA signal ŝ ∈ RJ .
7: procedure THE PROPOSED METHOD(̂s,x)
8: Λ0 ← 0
9: s0 ← 0

10: for k = 1 . . . itermax do
11: sk+1 ← (2ΨTΨ+ρI)−1(ρzk+2ΨT (x−vk)+Λk)

12: zk+1 ← shrink(sk+1 − Λk

ρ
,
λ1
ρ
)

13: vk+1 = shrink(x−Ψsk+1,
λ2
2
)

14: Λk+1 ← Λk + ρ(zk+1 − sk+1)
15: end for
16: ŝ← sitermax

17: return ŝ
18: end procedure

IV. SIMULATION RESULTS

In this section, the simulation results are illustrated. We
consider a uniform linear array with 50 sensors and half-
wavelength interelement spacing. In our proposed method we
set λ1 = 0.5 , λ2 = 0.5 and ρ = 1.1 and the maximum number
of iteration is considered 100. The time snapshot is N = 50
and the method in [15] has been selected as the benchmark
algorithm. In the first scenario, we assume that there are signal
sources in 6 locations: θ = [22◦, 30◦, 40◦, 50◦, 63◦, 75◦] and
10% of the array sensors are imperfect (they have gain/phase
uncertainty). The MSE of the DOA vector, s, versus SNR is
evaluated and depicted in Figure 1.

The MSE defined as:

MSE =
1

NH

N∑
i=1

H∑
h=1

(Ŝh,i − Si)
2 (16)

where N is number of snapshots and H is number of it-
erations. With increasing SNR, the MSE decreases for both
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Fig. 1. The MSE of the estimated DOA versus SNR when 10% of the array
sensors are imperfect.

Fig. 2. The MSE of the recovered vector v versus SNR when 10% of the
array sensors are imperfect.

of the methods, however our method achieves much lower
DOA estimation error compared to the benchmark. As another
comparison, we consider the the MSE of the vector, v, defined
in (6) as a measure of the reconstruction of the gain/phase
uncertainty values. We plot the MSE of the vector, v, with
respect to the SNR value in Figure 2.

We observe that the vector, v, is not estimated so properly
using the benchmark algorithm, while our suggested method
is capable of resolving the gain/phase uncertainty issue. The
main reason that we can mention for this poor performance
of the method in [15] is that their problem modeling does not
seem to be correct. The authors assume that the gain/phase
uncertainty matrix G′ is a low-rank one so the nuclear norm
minimization is used to solve the problem. However, this
assumption is not true since according to (4), the gain/phase
uncertainty matrix is a diagonal matrix with non-zero diagonal
entries which yields a full-rank matrix. We believe that this
incorrect modeling results in poor performance for the method
in [15].

In the second scenario, similar to the pervious case, we
consider 10% of array sensors to have gain/phase uncertainty.
In contrast to the first scenario, we select 6 source locations
uniformly at random which is changed at each snapshot. The
average MSE of DOAs over all the snapshots versus SNR has
been shown in Figure 3.

According to this figure, we see that the suggested method
offers lower estimation error for different SNR values. The

Fig. 3. The average MSE of the estimated DOA versus SNR when 10% of
the array sensors are imperfect and source locations change randomly at each
snapshot.

Fig. 4. The average MSE of the recovered vector v versus SNR when 10%
of the array sensors are imperfect and source locations change randomly at
each snapshot.

average MSE of the recovered vector v versus SNR has been
plotted in Figure 4.

This figure also indicates that the proposed method performs
significantly better than its counterpart.

In the third case, the location of targets are fixed as the first
scenario, but the location of imperfect sensors are changed at
each snapshot. The average MSE of DOA vector as well as
the average MSE of the recovered vector v versus SNR have
been depicted in Figures 5 and 6, respectively.

We observe that both of the methods achieve lower average

Fig. 5. The average MSE of the estimated DOA versus SNR when the
location of the imperfect sensors change randomly at each snapshot.
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Fig. 6. The average MSE of the recovered vector, v, versus SNR when the
location of the imperfect sensors change randomly at each snapshot.

Fig. 7. The MSE of the estimated DOA versus the number of imperfect
sensors.

MSE for higher SNR values, however our proposed method
outperforms the method in [15], significantly.

In the fourth scenario, we investigate the efficiency of the
methods in the case of increasing the number of corrupted
sensors. The 6 sources are fixed as the first scenario, and the
number of imperfect sensors are changed. Figure 7 indicates
the MSE of the estimated DOAs with respect to the number
of imperfect sensors.

According to this figure, we see that the estimation error
increases with the number of imperfect sensors which is
expected. Moreover, similar to the pervious scenarios, the
proposed method offers supperior performance compared to
its counterpart.

As the last experiment, we consider three incoherent sources
with θ1 = 20◦ , θ2 = 40◦ and θ3 = 70◦ impinging on
a uniform linear array with 50 elements. The SNR value is
set to 20dB. To have a subjective comparison, we depict the
estimated DOAs in Figure 8.

According to this figure, the proposed method estimates the
DOA of all the three sources properly, however the method in
[15] is incapable of finding the correct DOAs.

V. CONCLUSION

In this paper, we considered the DOA estimation problem
in the presence of gain/phase uncertainty of the array sensors.
We offer a modeling for the DOAs as well as the gain/phase
uncertainties. With the aid of the joint sparsity property of

Fig. 8. The estimated DOA in 1 snapshot for SNR=20dB.

the DOAs and a vector obtained from the uncertainties, we
suggest an iterative algorithm to approximate the DOAs. The
simulation results in different scenarios validate the superiority
of the suggested method.
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