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Abstract—This paper proposes a sound source separation
method for vibration-derived sound signals such as sounds
derived from mechanical vibrations by using vibration sensors.
The proposed method is based on two assumptions. First, a
vibration signal and the sound derived from the vibration are
assumed to have a linear correlation. This assumption enables
us to model the vibration-derived sound as a linear convolution
of a transfer function and a vibration signal recorded by a
vibration sensor. Second, un-vibration-derived sound signals such
that the sound source is not connected to vibration sensors
via a solid medium are barely recorded by vibration sensors.
This assumption leads to a constraint of the transfer function
from the un-vibration-derived sound sources to the vibration
sensors. The proposed framework is the same as a microphone-
array-based blind source separation framework, except that
the proposed method constructs arrays with microphones and
vibration sensors, and the separation parameters are constrained
by the prior knowledge gained from the above second assumption.
Experimental results indicate that the separation performance
of the proposed method is superior to that of a conventional
microphone-array-based source separation method.

Index Terms—blind source separation, vibration-derived
sound, vibration sensor, microphone, local Gaussian model

I. INTRODUCTION

Reduction of noise emanating from machines has high
industrial value as a front-end of various interfaces used
in noisy environments such as plants and car environments.
Speech recognition system is a hands-free interface, and it
has been utilized in the car navigation systems and is expected
to help maintenance workers record the maintenance logs in
plants. Sound logs of machines are also expected to be utilized
for anomaly detections. However, the performances of those
applications often degrade due to noises of various mechanical
parts such as engines.

Various approaches to reduce the noise have been studied.
On the one hand, conventional single-channel noise-reduction
methods such as spectral subtraction [1], Wiener filtering [2],
using minimum mean-square error short-term spectral ampli-
tude [3], and using optimally-modified log-spectral amplitude
[4] work well when the noise is temporally stationary (e.g., the
sounds of engines and air-conditioners). However, when the
noise is highly non-stationary, such as the sounds of printers
and other complicated machines that have multiple driving
parts, the noise reduction performances of these methods are

greatly reduced. On the other hand, microphone-array-based
approaches [5], [6], [7], [8], [9], [10], [11] have been studied
for removing non-stationary noise. These methods utilize the
difference in the direction-of-arrival for each sound source
instead of the assumption of the stationary noise sources.
Classical microphone-array-based approaches such as beam-
forming (BF) [6] and independent component analysis (ICA)
[7] cannot separate more sound sources than sensors. Vari-
ous multichannel methods such as multichannel nonnegative
matrix factorization [8] and local Gaussian modeling (LGM)
[9], [10] have also been studied for separating more sound
sources than sensors. However, the separation is difficult for
the microphone-array-based methods when the directions of
the sound sources are close to each other, and when the noise
spatially diffuses.

In this paper, we focus on the fact that the noises of
machines are derived from the machines’ vibrations, and
we propose a sound source separation method for vibration-
derived sound using vibration sensors. The vibration sensors
are set such that they can record the vibrations from machines,
and the inputs of the vibration sensors and microphones are
recorded synchronously. The proposed method is based on two
assumptions. First, when a sound is produced from a machine’s
vibration and arrives at a microphone through the air, we
assume that the vibration-derived component observed by a
microphone and the signal observed by a vibration sensor have
a linear correlation. In accordance with this assumption, we
can model the vibration-derived sound as a linear convolution
of a transfer function and the vibration signal recorded by a
vibration sensor, and we can apply the modeling used in the
conventional microphone-array-based separation framework to
fuse the vibration sensors and microphones. In this paper, we
use a blind source separation (BSS) framework based on the
LGM [9]. The second assumption is that, un-vibration-derived
sound signals such that the sound source is not connected to
vibration sensors via a solid medium (e.g., speech signals) are
barely recorded by vibration sensors. This assumption leads
to a constraint of the transfer function from the un-vibration-
derived sound sources to the vibration sensors. In the proposed
method, we implement this constraint on the LGM framework
by using the prior of the covariance matrix of the multi-channel
observed signal [10].
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Fig. 1. Problem setting

The main contributions of this paper are twofold. First,
we experimentally show the possibility of assuming a linear
relationship between vibration and sound signals and applying
them to the same models in the conventional microphone-
array-based framework. Second, we demonstrate that fusing
vibration sensors and microphones with the constraint de-
scribed in the above paragraph provides better performances of
the vibration-derived-sound separation than using microphones
only.

II. PROBLEM STATEMENT

Figure 1 shows the problem statement in this paper. We
define two kinds of sounds: ‘vibration-derived sounds’ and
‘un-vibration-derived sounds’. The vibration-derived sound
is produced from a machine’s vibration and arrives at a
microphone through the air, and the machine’s vibration can be
recorded by a vibration sensor. The un-vibration-derived sound
is the sound of which the sound source is not connected to the
vibration sensor via a solid medium (e.g., speech signals), and
it is barely recorded by the vibration sensor. In Figure 1, as an
example, there are two vibration sources and two un-vibration-
derived sound sources. On the one hand, the mixed signal
of the un-vibration-derived sound cui(t) and the vibration-
derived sound cvj (t) is recorded by one or more microphones.
On the other hand, the mixed signal of vibration signals vi(t)
is recorded by one or more vibration sensors. i and j are
the indexes of the un-vibration-derived sound source and the
vibration-derived sound source, respectively, and t denotes the
discrete time index. Then, the goal of this paper is to separate
the mixed sound signal for each un-vibration-derived sound
source and each vibration-derived sound source.

III. PROPOSED METHOD

A. Input signal modeling

The proposed method assumes that a vibration-derived
sound and the vibration signal observed by a vibration sensor
have a high linear correlation. Figure 2 shows a waveform of
microphone input and its spectrogram and those of vibration
sensor input when a vibration speaker on a table was operating.
The vibration speaker is an actuator which can generate any
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Fig. 3. Correlation coefficients between sound and vibration signals for each
frequency bin. The average of correlation coefficients was 0.83.

signal given from an audio device on a solid medium. In
this experiment, the vibration speaker generated a simulative
vibration of an operating printer on the table. The vibration
sensor was set on the table, and the microphone was set 19
cm above the table and the vibration sensor. The sampling
frequency was 8 kHz. More experimental conditions are de-
scribed in Section IV-A. As shown in Figure 2, waveforms
and their spectrograms of sound and vibration are similar to
each other. Figure 3 shows the correlation coefficients between
the vibration-derived sound signal recorded by the microphone
and the vibration signal recorded by the vibration sensor for
each frequency bin. For measuring correlation, we calculated
power spectrograms of signals, and then for each frequency
bin, we calculated the correlation coefficients between time se-
ries of power of vibration sensor signal and that of microphone
signal. Although there are some fluctuations, the result shows
an average of correlation coefficients of 0.83. In accordance
with this result, we assume that they have a linear correlation,
and our proposed method approximates a vibration-derived
sound signal as a linear convolution of a transfer function and
a vibration signal.

cvj (t) ≈
T∑

t′=0

avj (t
′)vj(t− t′) (1)
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avj denotes the transfer function with the length of T .
In accordance with the assumption of linear correlation,

we can combine the multi-channel input signals of micro-
phones and vibration sensors by applying the conventional
microphone-array-based source separation frameworks. The
proposed method constructs an array with one or more mi-
crophones and one or more vibration sensors. However, the
conventional BF approaches [6] are difficult to be utilized
because it is difficult to calculate the time difference between
the acoustic signal passing in the air and the vibration signal
passing through the solid medium. Therefore, we utilize the
BSS framework which does not use any geometric infor-
mation. We employ the LGM-based BSS framework [9].
The LGM has high separation performance compared to the
conventional ICA-based approach [7], and we can easily add
a constraint on the original LGM by using the maximum a
posteriori (MAP) framework [10].

In this paper, we define the m-th microphone input and m-
th vibration sensor input at time t as xmic,m(t) and xvib,m(t),
respectively. The number of microphones and vibrations are
defined as Mmic and Mvib, respectively. Applying the short
term Fourier transform, the short term spectra xmic,m(f, τ)
and xvib,m(f, τ) are obtained. f and τ are the index of the
frequency bin and the frame index, respectively. We also
define the short term spectra of a multi-channel input signal
as follows:

xmic(f, τ) = [ xmic,1(f, τ) . . . xmic,Mmic(f, τ) ]T(2)

xvib(f, τ) = [ xvib,1(f, τ) . . . xvib,Mvib(f, τ) ]T (3)

x(f, τ) = [ xmicT (f, τ) xvibT (f, τ) ]T . (4)

Here, T denotes the transpose of the matrix. From the as-
sumption of the linear correlation, x(f, τ) can be expressed
as

x(f, τ) =
∑
i

cui(f, τ) +
∑
j

cvj (f, τ) (5)

=
∑
i

sui(f, τ)aui(f) +
∑
j

svj (f, τ)avj (f).

cui(f, τ) = sui(f, τ)aui(f) and cvj (f, τ) = svj (f, τ)avj (f)
represent multi-channel inputs for each un-vibration-derived
sound source and each vibration-derived sound source, re-
spectively. sui(f, τ) and svj (f, τ) are the original clean
signals from each un-vibration-derived sound source and
each vibration-derived sound source, respectively. aui(f) and
avj (f) are the transfer functions from each un-vibration-
derived sound source and each vibration-derived sound source
to each microphone and each vibration sensor, respectively.
aui(f) and avj (f) can be expressed as

aui(f) = [amicT

ui
,avibT

ui
]T (6)

= [amic,1
ui

(f), . . . , amic,Mmic
ui

(f), avib,1ui
(f), . . . , avib,Mvib

ui
]T (f)

avj (f) = [amicT

vj
,avibT

vj
]T (7)

= [amic,1
vj (f), . . . , amic,Mmic

vj (f), avib,1vj (f), . . . , avib,Mvib
vj ]T (f)

where amic,1
ui

denotes the acoustic transfer function from the
i-th un-vibration-derived sound source to the 1st microphone.

In the LGM framework, the probability density function of
a multi-channel speech signal is modeled as a time-variant
Gaussian with 0-mean and a time-variant multi-channel co-
variant matrix. Assuming the high linear correlation between
the sound and the vibration, the multi-channel vibration signal
can also be modeled by the 0-mean time-variant Gaussian.
Therefore, cui(f, τ) and cvj (f, τ) are modeled by Gaussian
distributions with 0-mean and the time-variant covariant matrix
pui(f, τ)Rui(f) and pvj (f, τ)Rvj (f), respectively. Then, the
multi-channel input signal is also modeled by a Gaussian
distribution with 0-mean and the covariant matrix Rx(f, τ)
and Rx(f, τ) as follows:

Rx(f, τ) =
∑
i

pui(f, τ)Ruj (f)+
∑
j

pvj (f, τ)Rvi(f). (8)

where Rui
(f) and Rvj

(f) denote the spatial correlation
matrices, and pui(f, τ) and pvj (f, τ) denote the activity of
un-vibration-derived sound and vibration-derived sound, re-
spectively.

B. Parameter estimation by using MAP-EM algorithm
In the proposed method, the unknown parameters are

Rui(f), Rvj (f), pui(f, τ), pvj (f, τ), cui(f, τ), and cvj (f, τ).
In the same way as in the original LGM framework, these
parameters are estimated by using the EM algorithm [12],
[8]. Moreover, the proposed method uses a constraint for
spatial correlation matrices related to the un-vibration-derived
sound sources Rui(f) in accordance with the assumption
that un-vibration-derived sound signals are barely recorded
by vibration sensors. The constraint of the spatial correlation
matrices can be implemented to the original LGM by using
the MAP estimation approach [10].

In accordance with [10], the proposed method models the
probability density function of Rui(f) as the inverse-Wishart
distribution and estimates the unknown parameters in the
framework of the MAP estimation with the EM algorithm. In
the EM algorithm, we define cui(f, τ) and cvj (f, τ) as latent
variables. If no un-vibration-derived sounds are recorded by
the vibration sensors, Rui(f) can be expressed as follows.

Rprior
ui

(f) =

[
RMmic×Mmic

ui
(f) 0Mmic×Mvib

0Mvib×Mmic 0Mvib×Mvib

]
(9)

RMmic×Mmic
ui

(f) = amic
ui

(f)amicH

ui
(f) (10)

Since a few un-vibration-derived sounds are recorded by
the vibration sensors in real situations, the proposed method
models the probability density function of Rui(f) as the
inverse-Wishart distribution as follows:

Pr(Rui(f)|Rprior
ui

(f), d)

=
|Rprior

ui
(f)|d|Rui

(f)|−(d+Mmic+Mvib)e
−tr(R

prior
ui

(f)R−1
ui

(f))

π(Mmic+Mvib)(Mmic+Mvib−1)/2Π
Mmic+Mvib
m=1 Γ(d−m+1)

(11)

where d (d ≥ Mmic +Mvib) is a parameter of the inverse-
Wishart distribution that determines the degrees of freedom
[13], and Γ denotes the gamma function.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2494



The n-th step of the estimation algorithm based on the
MAP-EM algorithm is written as follows.
E step
The sufficient statistics of the separated signals are computed
as the following steps. At first, the filters Wui(f, τ) and
Wvj (f, τ) for separating i-th un-vibration-derived sound sig-
nal cui(f, τ) and j-th vibration-derived sound signal cvj (f, τ),
respectively, are obtained by the following equations.

Rcui
(f, τ) = p(n−1)

ui
(f, τ)R(n−1)

ui
(f) (12)

Rcvj
(f, τ) = p(n−1)

vj
(f, τ)R(n−1)

vj (f) (13)

Rx(f, τ) =
∑
i

Rcui
(f, τ) +

∑
j

Rcvj
(f, τ) (14)

Wui(f, τ) = Rcui
(f, τ)R−1

x (f, τ) (15)

Wvj (f, τ) = Rcvj
(f, τ)R−1

x (f, τ) (16)

By using the estimated filters Wui(f, τ) and Wvj (f, τ), the
separated signals cui(f, τ) and cvj (f, τ) are estimated as
follows.

ĉui(f, τ) = Wui(f, τ)x(f, τ) (17)

ĉvj (f, τ) = Wvj (f, τ)x(f, τ) (18)

Then, the sufficient statistics that are used in the M step are
computed by the following equations.

R̂cui
(f, τ) = ĉui(f, τ)ĉ

H
ui
(f, τ)

+(I −Wui(f, τ))Rcui
(f, τ) (19)

R̂cvj
(f, τ) = ĉvj (f, τ)ĉ

H
vj (f, τ)

+(I −Wvj (f, τ))Rcvj
(f, τ) (20)

Here, I denotes the identity matrix, and H means the conju-
gate transpose of the matrix.
M step
By using the sufficient statistics of the separated signals
computed in the E step, the activities and spatial correlation
matrices are updated by the following equations.

p(n)ui
(f, τ)= 1

Mmic+Mvib
tr(R

(n−1)−1

ui (f)R̂cui
(f, τ)) (21)

p(n)vj (f, τ)= 1
Mmic+Mvib

tr(R
(n−1)−1

vj (f)R̂cvj
(f, τ)) (22)

R(α,β)(n)

ui
(f) =

1
γ(d+Mmic+Mvib)+L

∑
τ

1

p
(n)
ui

(f,τ)
R̂cui

(f, τ)

((α, β) < Mmic)
1
L

∑
τ

1

p
(n)
ui

(f,τ)
R̂cui

(f, τ)

(otherwise)

(23)

R(n)
vj

(f) =
1

L

∑
τ

1

p
(n)
vj (f, τ)

R̂cvj
(f, τ) (24)

L is the number of frames. R(α,β)
ui (f) denotes (α,β) elements

of Rui(f). γ is a hyper parameter which controls the strength
of the constraint for Rui(f). In this paper, we set hyper
parameters as d = Mmic +Mvib and γ = 10.0, respectively.
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IV. EXPERIMENTS

A. Experimental conditions

We carried out experiments for separating an un-vibration-
derived sound and two vibration-derived sound signals. Fig-
ure 4 and Figure 5 show the top view and the side view of the
experimental environment, respectively. A loudspeaker was set
40 cm above the table, and the impulse response was recorded
by using the time stretched pulse (TSP) method [14]. The
speech uttered from the loudspeaker’s position was simulated
by convolution of the impulse response and clean speech. The
original clean speech was extracted from the TIMIT database
[15] for 34 speakers (one utterance each).

For vibration-derived sound sources, we set a mini pump
and a vibration speaker on the table. The vibration speaker
is a kind of actuator that can generate any vibration given
from an audio device on a solid medium. In this experiment,
we recorded the vibration of the operating printer in advance.
Then, by outputting the recorded vibration signal from the vi-
bration speaker, we artificially generated the printer’s vibration
on the table and its vibration-derived sound. The mini pump
generates stationary vibration and sound. We recorded the
mixed sound and mixed vibration of those from the vibration
speaker and the mini pump by using two vibration sensors and
three microphones. The mixed observed signal was simulated
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TABLE I
SDR [DB] FOR EACH NUMBER OF MICROPHONES AND VIBRATION

SENSORS. SDR OF MICROPHONE INPUT WITHOUT SEPARATION WAS -2.1
DB. “NUM. OF VIBRATION SENSORS = 0” MEANS THAT THE

CONVENTIONAL MICROPHONE-ARRAY-BASED METHOD IS APPLIED.

Num. of mic.
1ch 2ch 3ch

Num. of 0ch none 3.2 4.0
vibration 1ch 5.6 4.7 4.1
sensors 2ch 7.2 8.2 7.6

TABLE II
SDRS [DB] OF THE PROPOSED METHOD WITHOUT CONSTRAINT FOR

Rui (f).

Num. of mic.
1ch 2ch 3ch

Num. of vibration 1ch 4.4 4.8 5.6
sensors 2ch 5.9 5.5 5.4

by adding the convoluted speech signal and the vibration-
derived sound. The sampling frequency was 8 kHz, and the
frame size and frame shift were 1024 point and 64 point,
respectively.

B. Experimental results

In order to compare the performance of the proposed
method with the conventional method using microphones only,
we also evaluated the performance of the original LGM
method. Table I shows the signal-to-distortion-ratio (SDR)
of signals separated by using the proposed method and the
original LGM method. “Num. of vibration sensors = 0” means
that the original LGM method using a microphone array is
applied. The average SDR of the observed signal without
separation was -2.1 dB. As shown in this table, the proposed
method using at least one vibration sensor outperforms the
original LGM method, even when the total number of sensors
in the proposed method is smaller than that of original LGM
(See that the proposed method with one microphone and one
vibration sensor outperforms the original LGM with three
microphones). This result indicates that the use of vibration
sensors improves the separation performances compared with
using microphones only. One reason may be that the vibration
sensors can obtain the information of the vibration-derived
sound signal with higher quality than microphones because
few un-vibration-derived sound signals such as speech signals
are recorded by vibration sensors. Increasing the number of
vibration sensors increases the performance of the proposed
method.

In our proposed method, the spatial correlation matrix is
constrained by using the inverse-Wishart distribution. Table II
shows the SDR without the constraint. By comparing with
Table I, the constraint works better when the number of
vibration sensors is larger.

V. CONCLUSION

This paper has described a sound source separation method
for vibration-derived sound signals such as sounds derived
from mechanical vibrations by using vibration sensors. In
accordance with the assumption of a high linear relationship
between a vibration signal and the sound derived from the
vibration, the proposed method constructs arrays with mi-
crophones and vibration sensors and separates the vibration-
derived sound signal in the similar framework of the conven-
tional microphone-array-based BSS framework. In addition, in
accordance with the assumption that few un-vibration-derived
sound signals such as speech signals are recorded by vibration
sensors, the estimation of the spatial correlation matrices are
constrained. The experimental results indicates that the pro-
posed method outperforms the conventional separation method
using microphones only. In future work, we will evaluate the
performance of the proposed method with a greater variety
in the number of vibration sensors and microphones. We will
also evaluate the performance in more real situations using
real complicated machines instead of the vibration speaker.
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