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Abstract—The usage of video surveillance systems increases
more and more every year and protecting people privacy becomes
a serious concern. In this paper, we present ASePPI, an Adaptive
Scrambling enabling Privacy Protection and Intelligibility. It
operates in the DCT domain within the H.264 standard. For
each residual block of the luminance channel inside the region
of interest, we encrypt the coefficients. Whereas encrypted
coefficients appear as noise in the protected image, the DC
value is dedicated to restore some of the original information.
Thus, the proposed approach automatically adapts the level of
protection according to the resolution of the region of interest.
Comparing to existing methods, our framework provides better
privacy protection with some flexibilities on the appearance of
the protected version yielding better visibility of the scene for
monitoring. Moreover, the impact on the source coding stream
is negligible. Indeed, the results demonstrate a slight decrease in
the quality of the reconstructed images and a small percentage
of bits overhead.

I. INTRODUCTION

Video surveillance is becoming part of daily life and is
a major component of many security systems. While we
increasingly use cameras, the resolution of visual sensors (e.g.,
4k, HD) and the performance of video processing algorithms
(e.g., identity recognition) are continuously increasing. This
allows automatic image analysis (e.g. recognition of people,
vehicles, animals or bags) in CCTV (Closed-Circuit TeleVi-
sion) systems. Detection and recognition systems combined
with pervasive networks of dense cameras highlight issues in
privacy policy.

Solutions to protect privacy data in surveillance cameras
already exist, e.g. using black mask to block out a PIN
number entry for ATM security cameras, or to protect private
ownership for outdoor security cameras.

However, protecting the privacy of people is more complex
given that the monitoring of their actions should not be
hampered. Thus, one challenge raised in the article is to
manage the trade-off between the privacy protection and the
intelligibility (i.e. keeping a fair visualization of the scene).

Naive methods, like blurring, blacking out or pixelization
are already used to anonymize people (e.g., Google Street
View) but they are not reversible.

Authors in [10], [11], in the spatial domain, shift the
Most Significant Bits (MSBs) of encrypted pixels from a RoI
(Region of Interest) to the Least Significant Bits (LSBs). Then,
the bits from the edge value of the RoI (shape of the body)

replace the MSBs of the resulting image in order to keep the
scene understandable. This privacy filter is not robust against
some manipulations, in particular compression. Nowadays,
almost all videos are compressed, therefore, image processing
algorithms should be compliant with the compression.

Encryption approaches operate either before (e.g. [1]), dur-
ing (e.g. [3]) or after (e.g. [14]) compression, denoted pre-
, in- and post-compression encryption algorithms. For pre-
compression encryption, we will not recover the exact origi-
nal encrypted values due to the lossy compression therefore
we cannot fully decrypt them. Post-compression encryption
requires an additional step to make sure that the generated
bitstream is decodable by a conventional decoder, but it is too
complex and has a little added value. Therefore, our process
operates during the compression.

The rest of the paper is organized as follows: in the next
section, we summarize the current state-of-the-art of privacy
protection techniques using in-compression encryption. In
Section 3, we describe the proposed approach. We present
and discuss of the results in Section 4. Finally, we draw some
conclusions and give an outlook for possible future works in
Section 5.

II. RELATED WORKS

The most popular current standard for video compression
is H.264/AVC. The baseline profile supports Intra (I) and
Predicted frames (P) and entropy coding with context-adaptive
variable-length codes (CAVLC). I frames contains only intra
prediction, intra blocks are predicted from previously coded
data within the same frame. P frames contains intra prediction
but also inter prediction, inter blocks are predicted from blocks
of a previous reference frame. The residual blocks are the
differences between the predicted blocks and the real ones.

The following methods including the one of this paper,
perform, for each block, a motion compensation in the original
video, and then scramble the quantized and DCT-transformed
residues.

In H.264/AVC, directly encrypting blocks in the privacy
region of a video frame will result in drift error in the non-
privacy region due to intra and inter prediction from the
privacy region. Therefore, Tong, Dai et al. [3] propose two
main methods to prevent such drift error: Mode Restricted In-
tra Prediction (MRIP) and Search Window Restricted Motion
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Estimation (SWRME). To prevent the drift error caused by
intra prediction when applying the scrambling on the blocks
of the RoI, the fundamental idea in the MRIP technique is to
restrict the possible intra prediction modes for blocks around
the boundary of the privacy region. The principle of SWRME
is to forbid to use any block in the privacy region of the
reference frame, to predict a block in the non-privacy region
of the current frame.

Coefficient sign scrambling is a common encryption tech-
nique widely used within the context of DCT-based com-
pression formats. Dufaux et al. [4] propose to scramble the
signs of the nonzero coefficients of each blocks of the privacy
region within the MPEG-4 framework. However, it produces a
relatively weak scrambling effect especially on high resolution
images.

To enhance the scrambling effect for privacy protection,
Wang et al. [15] propose to encrypt the intra prediction modes
(IPM) in addition to the signs of the nonzero coefficients
(SNC) within the privacy region. They also propose a spiral bi-
nary mask mechanism to reduce the bitrate overhead incurred
by flagging the position of the privacy region. Su and al. [13]
directly modify the related data in the H.264/AVC compressed
bitstreams while embedding the correct information in the AC
coefficients. Khlif and al. [6] scramble the signs of motion
vectors using chaotic cryptography algorithm.

Contrary to [4], these three previous methods produce a
strong scrambling effect yielding to noisy pictures which
hamper the monitoring. Encryption or scrambling are powerful
reversible methods to protect the privacy but they have issues
to manage the trade-off with the intelligibility.

Ruchaud et al. [12] handle this trade-off by applying a
bitwise XOR operation between each DCT (DC+AC) coeffi-
cient and pseudo-random numbers within the JPEG framework
(operating on still images, not on videos). Thus, they shift
down the encrypted coefficients from one position which
allows the insertion of a value of their choice into the DC of
each block enabling a better visualization of the decompressed
privacy-protected images.

We take over the idea of setting the DC to a value of our
choice to control the final appearance of the images while
encrypting the original coefficients to protect the privacy. We
make this compliant with H.264/AVC. In addition, our process
automatically adapts the strength of the protection according
to the size of the privacy-sensitive region which is not the case
for the existing methods.

III. ASEPPI, AN ADAPTIVE SCRAMBLING ENABLING
PRIVACY PROTECTION AND INTELLIGIBILITY

We integrate our approach only for the luminance channel
(Y) within the residual blocks produced by the H.264/AVC
framework. Indeed, operating on the chroma channels yields
to unpleasant colors. To avoid drift error produced by our
process, we applied MRIP and SWRME approaches. The code
of our proposed process is available on a Github website 1.

1https://github.com/NatachaRuchaud/ASePPI

A. The region of interest (RoI)

Every 10 frames, we previously annotated or automatically
detect the region of interests (e.g., people faces and bodies),
denoted RoIs. We use publicly available face and people
detectors. The position of the RoI contains the upper left
point and the size (four numbers). We compute a bitwise
XOR operation among each number and a random number
(RN) generated by a pseudo-random sequence controlled by a
secret key. The encrypted RoI position is not encoded into the
scrambled video stream, we store it independently from the
privacy protected video. The number of bits needed to store
the RoI position is negligible. For instance, for a 4K resolution
(i.e., 4096*2160 pixels), we use 12 bits to store each encrypted
number, thus 48 bits every 10 frames (i.e., 4.8 each frame).
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Fig. 1: Workflow of the process for one intra block of I frame.

B. Encrypting the residual of I frames blocks

Each intra prediction inside the RoI follows additional steps
illustrated in bold in Figure 1. We encrypt the DC and AC
coefficients to protect data information. Then, the encrypted
coefficients are shifted to make available the DC position.
Thus, we lost the least significant coefficient (the last AC).

1) Encrypting the DC: in order to limit the noise due to
the scrambled DC which is hidden in the first AC coefficient,
we encrypt as in the algorithm 1, with sign(DC) equal to -1
if the DC sign is negative and +1 otherwise.

2) Permute the AC: we extract the AC coefficients except
the last one according to the zigzag code. Note, p, the number
of AC coefficients before EOB (End-of-Block, the remaining
coefficients are zero). To scramble them, we randomly permute
the p−1 AC coefficients using the Knuth shuffle algorithm [2]
that re-arranges their order. In other words, the AC coefficients
before the last non-zero coefficient are randomly permuted.
The last non-zero coefficient is used to mark the end of the
permutation.

3) Hidding scrambled coefficients into the AC ones: we
shift the scrambled coefficients by one position towards the
high frequencies in order to make available the DC position.
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if (|DC| < 16) then
X = 16;

else
X = 2n;

Generate a random number (RN) as in III-A;
if (DC 6= 0) & ((|DC| 6= (RN mod X))) then

DCe = (|DC| ⊕ (RN mod X))*sign(DC);
else

DCe = DC;

with n = blog2 |DC|c an integer
Algorithm 1: DC encryption

Then, we re-insert the scrambled coefficients into a block
according to the zigzag code and choose the DC value, denoted
DCnew, with the formula defined in III-B4.

4) Choice of the DCnew value: whereas encrypted coeffi-
cients appear as noise in the protected image, the DCnew value
is dedicated to restitute a minimum of information (e.g. the
average luminance associated with one or a group of blocks).

Keeping the original DC only for each n*m block leads
to a pixelated image of size n*m. The goal is to minimize
the size of these blocks in order to preserve the intelligibility
while minimizing the performances of face recognition for any
resolution. Minimize the size of the blocks is equivalent to
maximize the number of blocks. The equation (1) represents
the relation between the size of the blocks, denoted S, and the
number of blocks, denoted Nb, depending on the number of
pixels (h x w) inside the RoI. For example, if S is equal to
24, the residual blocks inside the 24*24 block have the same
DC coefficient, which is the DC of the 24*24 block (i.e. the
mean of the 24*24 block).

Nb =
h ∗ w
S ∗ S (1)

The higher Nb (i.e. the higher is the image quality), the
better the recognition is in general. Our goal is to find the
maximum value of Nb to preserve as much as possible the
intelligibility while minimizing the performance of face recog-
nition. Therefore, to fulfil this purpose, we did the following
empirical study by fixing several values.

We have selected as a baseline the face recognition algo-
rithm Eigen described in [7] based on the Euclidean distance
because of its robustness to pixelated face images (compared
to some other descriptors). We randomly selected a subset of
the Feret [9] and the ScfaceData [5] databases for the training
and another one for the testing. We tested this face recognition
algorithm on the original images from the testing set and on
the pixelated versions of them with different parameter values
(i.e. S, h and w).

According to Table I, we have selected the S values associ-
ated with the highlighted boxes representing the most impor-
tant drop in recognition performance at each resolution. From

PPPPPPS
h*w 128 x 96 176 x 144 352 x 288 704 x 576

Original 95.6 96 96.4 96.4
8 68.4 76.41 85.4 86
12 22.9 66.5 76.4 85.5
16 20.7 21.3 75.9 84.4
28 5.5 18.8 58.02 77.9
32 4.2 12.7 20.8 75.4
36 3.6 8.5 20.4 73.7
60 0 0 9.6 50.47
64 0 0 8.1 20.2
68 0 0 5.5 19.5

TABLE I: Accuracy of identity recognition (%) from faces.

these results and the equation (1), we deduce the maximum Nb
which is 99 (e.g. 176∗144

16∗16 = 99). Face recognition performance
significantly drop if Nb is equal to 99 or less. Note that the
databases contain almost no variation (e.g. similar lightening
conditions, without delay between sessions) compared to the
reality, that is why the recognition task still performs upper
than 20 % even after a strong pixelization. To have a more
accurate value of max(Nb), we should use a more realistic
database.

Looking for maximizing Nb, the relation can be rewritten
as in equation 2. S is rounded to its nearest multiple of 4 as
in equation (3) because the size of each residual block is 4*4.
Therefore, the equation (3) automatically defines S, a multiple
of 4, maximizing the number of blocks such as we protect the
privacy. However, we can change the value of max(Nb) to
have stronger or weaker protection.

max(Nb) ≥ Nb

⇔ max(Nb) ≥ h ∗ w
S ∗ S

⇔ S ≥

√
h ∗ w

max(Nb)

(2)

S ≈

⌈√
h∗w

max(Nb)

4

⌉
∗ 4 ≥

√
h ∗ w

max(Nb)

S =

⌈√
h∗w
99

4

⌉
∗ 4

(3)

C. Encrypting the residual of P frames blocks

In addition to process the transformed and quantized
residues of I frames, we also encrypt the ones of P frames.
Indeed, in H.264/AVC framework, the blocks inside the RoI
may be predicted from unscrambled blocks or become closer
to the original one if the reference scrambled blocks are
already close to the original ones.

Therefore, we randomly permute the AC coefficients as in
III-B2 and leave the DC as it is. Thus, no information is lost.
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IV. EXPERIMENTAL RESULTS

We compare the proposed method (ASePPI), with the
encryption of the signs of the non-zero coefficients (SNC)
and with the addition of the encryption of the intra prediction
modes (SNC+IPM) within the privacy region. We apply all
methods only on the luminance channel to be comparable to
our approach. We use different values of QP and IP in our
evaluations. QP is the quantization parameter and IP the intra
period that defines the frames number between two I frames.

For the evaluation, we have selected the following se-
quences: ’hall’, ’foreman’, ’suzie’, ’akiyo’, ’carphone’, ’claire’
and ’miss-america’. In IV-A, we assess the privacy protec-
tion and the intelligibility for the scrambled frames of the
sequences with CIF size. In IV-B, we also evaluate the bits
overhead and the reduction in PSNR performances for the
reconstructed sequences with QCIF size.

A. Privacy protection vs Intelligibility

From a subjective point of view, the details of the face is still
easily identified applying SNC (see 2(b) and 2(f)) compared
to the two others methods (SNC+IPM and ASePPI).

We apply the Eigen face recognition algorithm (same than
in III-B4) adding, in the training set, faces from the odd frames
for each sequence in CIF size. We test faces from the even
frames for each sequence and we get 99.6 % of accuracy
for original face images. We report the accuracy of SNC and
ASePPI methods in the Table II. Therefore, the results show
that our method enhances the privacy protection (of 14.22 %
in average) especially when IP increases, compared to SNC.

TABLE II: Accuracy of face recognition depending on the
Intra Period (IP), with QP = 24 and QP = 18, respectively.

IP SNC ASePPI
5 19.18 9.3

10 20.2 8.6
30 21.1 7.9
50 28.3 7.2

IP SNC ASePPI
5 19.9 10.7

10 21.2 9.2
30 22 8.5
50 31 7.7

Nevertheless, using both SNC and IPM hampers the global
understanding of the scene. For example, in Figure 2(k) it is
not obvious that the protected area contains a person carrying
her purse whereas in Figure 2(l) the shape of the head and
feet are clearly distinguishable as well as the bag. We also
evaluate the intelligibility with two metrics, the peak signal-to-
noise ratio (PSNR) to measure the amount of the degradation
and the edge similarity score (ESS) [8] to assess the degree
of resemblance of the edge and contour information between
two images. We apply these metrics between the original RoI
and the scrambled RoI of the seven sequences for each QP
=18, 24 and IP=1, 5, 10, 30. Compared to ASePPI, SNC+IPM
degrades, in average, 8.5 % more and its degree of resemblance
of the edge is 22.8 % less important. However, in extreme
cases, a block can have only one AC coefficient with a larger
amplitude than the DCnew. This produces more noise than
usual. To avoid these cases, we suggest to use QP lower or
equal to 24.

Thus, our proposed approach, ASePPI, produces enough
scrambling to protect the privacy of people for different
resolutions while it still preserves a fair visualization of the
scene which is very important in video surveillance.

B. Impact on source coding stream

The bits overhead is the percentage of bits added by our
process comparing to the baseline profile (H.264 without
encryption). For example, for the ’foreman’ sequence, with
QP = 24 and IP = 10, the number of saving bits are 83289
for the baseline profile and 90522 with the integration of our
process which produces 100 − 100 ∗ 83289/90522 % of bits
overhead, i.e. 7.99 %. The I frames produce the most important
increase of the number of bits in the stream. That is why, the
higher the IP the lower is the bits overhead.

TABLE III: Bits overhead (%) with QP set to 24

IP Suzie Foreman Hall Akiyo Carphone Claire Miss America
1 13.21 8.4 5.39 5.75 2.79 9.96 4.33
5 13 8.2 5.31 5.3 1.91 9.55 3.27

10 12.96 7.99 5.26 4.21 1.72 9.18 3.18
30 12.14 7.43 5.1 3.74 1.63 8.1 2.9

The drop of PSNR performances (for RGB channels) in
percentage for reconstructed images (recovered by applying
the reverse process with the correct secret key) compared to
the original ones, is computed in the same way than the bits
overhead. The higher QP the lower is the number of blocks
where the last coefficient is lost, thus, the closer are the PSNR
performances of our process with the ones of the baseline.

TABLE IV: PSNR decrease (%) with IP set to 10.

QP Suzie Foreman Hall Akiyo Carphone Claire Miss America
12 1.36 1.32 1.36 1.4 1.8 1.9 0.5
18 0.91 1.01 1.11 1.3 1.3 1.8 0.45
24 0.86 1.26 1.28 1.18 1.76 1.11 0.41
30 0 0 0.7 0 0.14 0.51 0.09

C. Replacement attack

In case of replacement attack, for SNC and ASePPI meth-
ods, only the DC of each block is available because all
encrypted coefficients are set to 0. This leads to have pixelated
images. In SNC case, the size of this pixelization is always the
same and small (e.g. 4*4). Thus, for RoI of high resolution,
SNC method may fail to protect the privacy whereas ASePPI
automatically adapts this size depending on RoI resolution.

V. CONCLUSION

Contrary to existing methods, the application of ASePPI
enhances the scrambling effect for privacy region protection
of videos with the aim of keeping the minimum of informa-
tion required by the surveillance. Our approach automatically
adapts the strength of the privacy protection depending on the
resolution of the privacy-sensitive regions. The quality of the
reconstructed videos are very closed to the original ones and
the process produces a small percentage of bits overhead.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2: With CIF size, QP= 24 and IP = 5: (a) The 1st frame of original ’foreman’ (I frame), (b) encrypted by SNC, (c)
encrypted by SNC+IPM, (d) encrypted by our process. (e) The 15th frame of original ’foreman’ (P frame), (f) encrypted by
SNC, (g) encrypted by SNC+IPM, (h) encrypted by our process. (i) The 40th frame of original ’hall’ (P frame), (j) encrypyted
by SNC, (k) encrypyted by SNC+IPM, (l) encrypyted by our process.

We are evaluating the security of our process in terms of
brute force and replacement attacks and we are refining the
method to be robust against these attacks.

As further works, we can subjectively evaluate the efficiency
of the privacy protection and the intelligibility by doing a
survey, asking the gender, age or ethnicity and the activities
of persons where their images are protected by our method.
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