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Abstract—An adaptive exponential functional link artificial
neural network (AEFLANN) based active noise control (ANC)
system trained using a collaborative learning scheme has been
designed in this paper. In the proposed approach, separate
learning mechanism is used for updating the weights of the linear
portion of the AEFLANN and its non-linear section. The outputs
of the linear and non-linear sections are suitably combined and
the update mechanism involves the update of weights of linear
and non-linear portions, the combination parameter and the
adaptive exponential factor. Simulation study shows enhanced
noise cancellation in comparison with other non-linear ANC
schemes compared.

Index Terms—Active noise control, functional link artificial
neural network, noise cancellation, non-linear filter.

I. INTRODUCTION

Active noise control (ANC) has recently emerged as an
effective method of noise mitigation in the low frequency zone.
The fundamental principle of ANC is the concept of destruc-
tive superposition [1]-[3]. One of the most successful applica-
tions of ANC is the ANC headphone [4] and the technology
of ANC has been recently introduced into digital hearing aids
[5]. ANC systems can be feed-forward or feedback depending
on the configuration of the noise cancellation scheme. A
basic feed-forward ANC scheme consists of two microphones
(reference microphone and error microphone), a loudspeaker
and a control mechanism. The control mechanism is usually
achieved using an adaptive finite impulse response (FIR) filter
trained using a filtered-x least mean square (FxLMS) algorithm
(11, [6], [7].

A few non-linear ANC schemes, which uses an adaptive
non-linear filter as the controller, has been recently reported in
literature to achieve noise cancellations in scenarios in which
non-linearities exist in the ANC system [7]-[11]. The popular
among them are the adaptive Volterra filter trained using a
Volterra FXLMS (VFXLMS) and the functional link artificial
neural network (FLANN) updated using a filtered-s least mean
square (FSLMS) algorithm [12]-[16]. Both the adaptive non-
linear filters fall under the category of linear-in-the-parameters
non-linear filters.

An adaptive exponential FLANN (AEFLANN) has been
recently proposed by Patel et al. as a new linear-in-the-
parameters non-linear filter [17]. The authors have tested the
efficacy of the filter for non-linear system identification and
non-linear ANC. The enhanced modeling accuracy as well as
noise mitigation capacity of the AEFLANN based filters have
also been reported. Comminiello et al. has recently proposed
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a collaborative functional link adaptive filter model for non-
linear acoustic echo cancellation [18]. In the collaborative
learning approach reported in [18]-[20], different adaptive
algorithms are used for updating the weights of the linear
and non-linear components of a FLANN, followed by a
suitable adaptive combination of the outputs of the linear
and non-linear portions. In an attempt to improve the noise
mitigation capability of AEFLANN based non-linear filters,
a collaborative learning approach has been developed in this
paper. An update rule for updating the weights of the linear
and non-linear sections, the shrinkage factor in a collaborative
learning scheme and the adaptive exponential parameter are
derived.

The rest of the paper is organized as follows: The collab-
orative learning scheme based AEFLANN is introduced in
Section 2 and the corresponding update rules are developed.
A simulation study is carried out in Section 3 to test the
noise cancellation capacity of the proposed scheme and the
concluding remarks are drawn in Section 4.

II. AEFLANN BASED COLLABORATIVE ANC SYSTEM

In the proposed ANC scheme, the controller employed is
an AEFLANN, which is a linear-in-the-parameters non-linear
filter. Let z(n) be the reference signal, which is sensed by the
reference microphone and e(n) be the signal at the output of
the error microphone. The tap delayed reference signal vector

x(n) = [z(n),z(n —1),....,z(n — N +1)]7 (1)

of length N is functionally expanded to an expanded vector
given by
g(n) = {1, z(n), e *MIeMlsin[re(n)], e @Mz
cos[rz(n)], -+ , e~ “MNEMgin[ Bra(n)], e @Mzl
cos[Brra(n)], z(n — 1), e~ @™ =Dlgin[ra(n — 1)),

e Mlz=Dlcog[ra(n — 1)],- - -, e 221
sin[Brz(n — 1)], e_a(")‘””(”_lﬂcos[wa(n -1,
z(n— N + 1), e Ml2e=N+Dlginlra(n — N +1)],

e~ amlem=N+Dleos[rz(n — N +1)],-- -,
e_a(")‘m("_N""l)lsin[Bm)j(n ~ N+ 1)}7 e—a(n)|z(n—N+1)]

cos[Brz(n — N + 1)]}1. (2)

Above equation can also be written as
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Fig. 1. Schematic diagram of an AEFLANN based collaborative ANC scheme
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exp[—a(n)|z(n)[Jcos2re(n)], - -, exp[—a(n)|z

g(n) = {1, z(n), exp[—a(n)|z(n)]sin[rz(n)
exp[—a(n)[@(n)|Jcos[rz(n)], exp[—a(n)|=(n)]

sin[Brx(n)], exp[—a(n)|z(n)||cos[Brx(n)

where B is the order of functional expansion and

mx(n)],

(n)]]

INE)

a(n) is

an adaptive exponential parameter, which is updated continu-

ously. The expanded signal is of length
M=N2B+1)+1

and may be split into the linear portion
zi(n) = {1,2" (n)}"

and the non-linear section

T (n) = exp[—a(n)|x(n)|] - zr(n)’

Iwhere, A.[Bi, Ba, ---, Bn 1=[A.B1, A.Ba, ---, A.By]
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“4)

®)

(6)

where,

xr(n) = {sin[rx(n)], cos[rx(n)],
sin[2rx(n)], cos[2mx(n)], - -, sin[Brax(n)],
cos[Brxz(n)]}T. (7)

The output of the linear and non-linear sections are given by

w(n) = w(n) @ (n), (®)
yni(n) = wpi(n) @y (n) 9)
where w;(n) and wy;(n) are the weights vectors of length
N +1 and 2N B for linear and nonlinear sections respectively.

The overall output of the controller which is fed to the control
speaker is given by

y(n) = yi(n) + X(n)yni(n) (10)

in (10) A(n) is the shrinkage parameter. The overall error
signal sensed at the error microphone is given by

e(n) = d(n) = s(n) * [yi(n) + A(R)ym(n)]. (A1)

where s(n) is the impulse response of the electro-acoustic path
from control speaker to the error microphone (referred to as
the secondary path) and d(n) is the disturbance signal. The
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weights of the linear portion are updated with an objective to
minimize the cost function given by

£(n) = Ele*(n)] = €*(n),

where E[-] is the expectation operator. The weight update rule
is given by

12)

Hi

—_—_ 13
z/Tx) + 6 (13)

wi(n+1) = w(n) + xye(n)
where 1 is the step size of the linear portion, x; is a;
filtered through a model of the secondary path §(n) and ¢ is a
small constant to avoid divide by zero error. In a collaborative
learning approach, the weights of the non-linear section are

updated with an objective to minimize the cost function

2 2

fnl (n) = E[enl (Tl)] ~ enl(n)7
where e,; is the local error (contribution due to non-linear
section). Using a gradient descent approach, we can write the
update rule for the non-linear section as

Wi (n+ 1) = Wy (n) + —rnt

/
LTy + Y

(14)

x,e(n), (15)
where /1,,; is the step size of the non-linear section and x/,; is
x,,; filtered through a model of the secondary path. In addition
to the weights of the linear and non-linear portions, we need
to update the shrinkage parameter as well as the adaptive
exponent factor. The shrinkage parameter is given by

1

) = T e 1o
which is updated as
a(n+1) =an) + %6(71)?;;5(7%(”)[1 —A(n)] A7)
where
p(n) =p(n — 1) + (1 =)y (n) (18)

where v is the smoothing factor, y/,(n) is yni(n) filtered
through a model of the secondary path, ., is the step-size and
p(0) = 1 [18]. In a similar fashion, the adaptive exponential
factor a(n) is updated as

a(n+1) = a(n) — %Aa(n) (19)

where A,(n) is an instantaneous estimate of the gradient of
&ni with respect to the parameter a(n) and i, is the step size.
We have

A = G
= Zenz(n)a{gT(na);unl(n)}
= —2e,(n)z" (n)wn(n) (20)
where
) = G2 — o/ )] expl-a(o)la (o) -sinfre ()],

cos[rx’(n)], sin[27x’ (n)], cos[2wx’ (n)], - - - , sin[Brz' (n)],
cos[Bra'(n)]}T  (21)
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where x’(n) is x(n) filtered through a model of the secondary
path and z(n) is a 2N B x 1 vector. Using (19) and (20), we
get

a(n+1) = a(n) + peen(n)z” (n)w,(n). (22)

Thus (13), (15), (17) and (22) together form the collaborative
learning strategy for an AEFLANN based ANC system. The
schematic diagram of the proposed approach is shown in Fig.
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Fig. 2. Experiment 1: (a) Comparison of convergence characteristics obtained
as an average of 50 independent trails followed by a smoothing using a moving
average filter of length 100 (b) Variation of exponential factor and (c) variation
shrinkage parameter with respect to iterations.

III. SIMULATION STUDY

In this section, we evaluate the noise mitigation capability
of the proposed non-linear filter based ANC scheme. The per-
formance comparison with ANC schemes based on a FLANN
[12], adaptive Volterra filter [21] and AEFLANN [17] has been
made in terms of mean square error (MSE) defined by

§ = 10log,, {E [62(n)} } :

A measurement noise, with a signal to noise ratio of 40 dB
has been considered in all the experiments.

(23)

A. Experiment 1

In this experiment, we have considered a tonal primary
disturbance. The disturbance signal used is given by

x(n) = sin (27#”)

(24)
[

where f; = 6000 Hz is the sampling frequency and f is taken

as 150 Hz. The primary disturbance signal sensed at the error

microphone is given by

d(n) =u(n —2) +0.8u*(n — 2) — 0.4u3(n — 1), (25)
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Fig. 3. Experiment 2: Magnitude of the frequency response of (a) Portion of
the primary path and (b) Secondary path.

where

u(n) = x(n) * q(n) (26)

with ¢(n) denoting the impulse response of the transfer

function

Q(z)=23-032"1+0.227°

and * representing the linear convolution operator [12]. The
transfer function of the secondary path considered is given by

27

S(z) =2"24+0.5272. (28)

The convergence characteristics for the different algorithms
compared is shown in Fig. 2(a), where we have used a moving
average window of length 100. The average MSE values ob-
tained as an average of last 1000 samples are —19.63, —23.65,
—29.51 and —30.14 dBs for FsLMS, VFXLMS, AEFsLMS
and collaborative AEFSLMS algorithms respectively. The vari-
ation of shrinkage factor and the adaptive exponential factor
for the collaborative AEFSLMS algorithm with respect to
iterations is shown in Fig. 2(b) and (c) respectively. The other
simulation parameters used are: FSLMS (step size p; = 0.2,
N =10, B =1, M = 30), VFXLMS (step size p, = 0.06,
N = 10, order C = 2, M = 65), AEFSLMS (step size
tae = 0.2, pig = 0.01, N =10, B =1, M = 30) and
for collaborative AEFSLMS (u; = 0.05, i = 0.3, pg = 0.2,
o =04, v=0.99, N =10, B=1, M = 30).

B. Experiment 2

The disturbance signal considered in this experiment is
given by (24), where f is taken as 200 Hz and f; = 4000
Hz. The primary path used is a cascade of a transfer function
H,(z), the magnitude of its frequency response is shown in
Fig.3(a) [22] and a non-linear function given by

22

d =
() 1+ exp[—mzp(n

— 29
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Fig. 4. Experiment 2: (a) Comparison of convergence characteristics obtained
as an average of 20 independent trails followed by a smoothing using a moving
average filter of length 100 (b) Variation of exponential factor and (c) variation
shrinkage parameter with respect to iterations.

where x,(n) is the input to the nonlinear function, 7; = 6
and 72 = 3.5. The magnitude of the frequency response of the
secondary path is shown in Fig.3 (b) [22]. Similar to the earlier
experiments, an improved noise mitigation is achieved using
the proposed collaborative learning approach. The variation of
MSE, exponential factor and shrinkage parameter with respect
to iterations is shown in Fig.4 (a), (b) and (c) respectively.
The mean MSE values calculated over the last 1000 iterations
are —21.60, —18.75, —23.57 and —29.06 dBs for FsLMS,
VEXLMS, AEFsLMS and the proposed collaborative learning
scheme. The other simulation parameters for the different al-
gorithms compared are as follows: FSLMS (step size p; = 0.2,
N =40, B =2, M = 200), VEXLMS (step size j, = 0.05,
N = 20, order C' = 2, M = 230), AEFSLMS (step size
tae = 0.2, u, = 0.05; N = 40, B = 2, M = 200) and for
collaborative AEFSLMS (u; = 0.02, py; = 0.04, p, = 0.01,
o = 0.01, v=10.99, N =40, B =2, M = 200).

C. Experiment 3

The primary disturbance considered in this experiment is
same as that of first experiment. The primary path is consid-
ered to have a transfer function given by Q(z) for the first
50000 iterations.The primary disturbance signal observed at
the error microphone is given by

d(n) = u(n—2)+0.8u*(n—2)—0.4u>(n—1)+u(n—2)u*(n—1),
(30)
for the rest of the iterations with w(n) as obtained in first
experiment and the secondary path considered here is same
as (28). The improved performance characteristics can be
observed from the Fig 5 (a) for both the linear and nonlinear
portions. The variation of exponential factor and shrinkage
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Fig. 5. Experiment 3: (a) Comparison of convergence characteristics obtained
as an average of 50 independent trails followed by a smoothing using a moving
average filter of length 100 (b) Variation of exponential factor and (c) variation
shrinkage parameter with respect to iterations.

parameter with respect to iteration are depicted in Fig 5
(b) and (c) respectively. The mean MSE values calculated
over the last 1000 iterations for the portion having nonlinear
primary path are —18.01, —16.91, —27.46 and —28.82 dBs for
FsLMS, VFxLMS, AEFsLMS and the collaborative learning
scheme respectively. The other simulation parameters for the
different algorithms compared are as follows: FSLMS (step
size uy = 0.3, N =10, B =1, M = 30), VFXLMS (step size
1y = 0.06, N = 10, order C' = 2, M = 65), AEFSLMS (step
size pge = 0.3, pg = 0.09, N =10, B =1, M = 30) and
for collaborative AEFSLMS (u; = 0.05, py; = 0.3, g = 0.6,
bo =04, v=10.99, N =10, B =1, M = 30). It can be
clearly noticed that the proposed learning rule is quite good
in handling both linear and nonlinear scenarios.

IV. CONCLUSIONS

In this paper, a collaborative learning approach has been
proposed for an AeFLANN based non-linear ANC scheme.
A set of learning rules for updating the weights of the linear
and non-linear sections of the controller has been developed.
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