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Abstract—This paper proposes a new TDOA estimation based
on phase-voting cross correlation and circular standard deviation.
Based on phase delay and kernel function, the proposed method
generates a probability density function (PDF) of TDOA for
each frequency bin. TDOA estimate is determined by voting
the PDFs generated for all frequency bins. Peak positions of
the bin-wise PDFs for the target signal are concentrated only at
the target time difference because peak positions for the noise
totally differ among bins and periodicity of peaks depends on
frequency. Therefore, by voting the PDFs for all frequency bins,
the peak position for the target can be easily identified. The kernel
width of PDF is determined by circular standard deviation of
cross spectral phase for each frequency bin. This width control
enhances peaks of PDFs for high SNR frequency bins since phases
for high SNR bins are more stable than those for low ones.
Evaluation with ship and drone sounds shows that the RMSE
of TDOA estimation by the proposed method reaches 0.37 times
that by GCC-PHAT.

I. INTRODUCTION

Acoustic environment understanding for detection of acci-
dents or crimes is an important technology for establishing a
safe and secure city [1]. Acoustic surveillance, which reports
an incident and its time and place to an administrator or a
supervisor based on analysis of observed acoustic signals, is
one of applications of acoustic environment understanding.
Acoustic surveillance is mainly supported by two functions:
acoustic event detection and sound direction-of-arrival (DOA)
estimation. Acoustic event detection recognizes and classifies
a physical phenomenon or sound source which causes the
observed event sound. Some of recent methods are found in
[2]-[4]. DOA estimation is also important for acoustic surveil-
lance. Its estimate is used for localization of the sound source,
angle view control of surveillance cameras, and enhancement
of the target sound for acoustic event detection.

Several DOA estimation methods have been proposed
mainly for speaker direction estimation used in digital
video cameras, teleconference systems and interactive robots.
Among methods using many microphones, steered response
power (SRP) localization [5] which finds a direction maximiz-
ing output power of steered beamformer, and subspace based
methods [6], e.g., the MUSIC [7] algorithm, are common.
For better performance, they usually require an array of many

widely used for DOA estimation [9]-[12]. To obtain the best
TDOA estimate, simple exhaustive search for selecting pairs of
microphone from the array is proposed [9]. Other conventional
methods [10]-[12] improve estimation accuracy by selecting
or weighting target signal frequency components estimated
with cross spectral power. In [10], minimum variance distor-
tionless response (MVDR) is used to estimate the target cross
spectrum for GCC. In SNR estimation used in [11] for TDOA
estimation, time-averaged input signal is adopted as target
signal estimate. This approach is effective under an assumption
that the target signal is stationary and has large power as
compared with noise. SNR-based target sound onset detection
in [12] extracts stationary components in the input power
spectrum as estimated noise and uses them for detection.

These conventional methods work well under relatively high
SNR conditions since they discriminate the target signal and
noise by using power spectrum. High SNR conditions, how-
ever, do not always hold for actual surveillance environments.
In addition, target sound power becomes smaller if target
sound source is located far from the surveillance microphone
position. Therefore, estimation accuracy improvement in lower
SNR conditions is important for the surveillance application.
However, it is difficult for conventional methods to archive
sufficient estimation accuracy in low SNR conditions.

In this paper, we propose a new TDOA estimation method
based on voting of bin-wise probability density function (PDF)
of TDOA. The bin-wise PDF is derived from cross spectral
phase and kernel function which give the center and the width
of the PDF. The PDF of TDOA in total is given by the sum of
all voted bin-wise PDFs. In the next section, the conventional
GCC-PHAT is reviewed with its drawback. Section 3 explains
the proposed method. Finally, in Section 4, evaluation results
show superiority of the proposed method.

II. CONVENTIONAL METHOD

GCC with PHAse Transform (GCC-PHAT) [8] has been
widely used for TDOA estimation and it is a basis for many
acoustic source localization methods. Figure 1 shows a block
diagram of GCC-PHAT. TDOA estimate 7 of two input signals
is given by

microphones, which causes limitation of surveillance place due 7 = argmaxri2(7), (D
to the large array. 4

For surveillance application, time difference of arrival ~Where o1
(TDOA) estimation based on generalized cross correlation ria(7) = 1 S12(k) o) 2528 )
(GCC) [8] which basically uses only two microphones is 12 K = [S12(k)| ’
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Fig. 3. Voting to aggregate bin-wise PDFs

k is a frequency bin index, K is the DFT length, and S5 (k)
denotes the cross spectrum of input signals. The main feature
of GCC-PHAT is normalization applied to the cross spectrum.
TDOA estimate is obtained as the peak position in the IDFT
of the normalized cross spectrum. TDOA estimation by GCC-
PHAT works with low computational cost, archives good
estimation accuracy under low noise environments, even with
high reverberation [13], [14].

However, estimation accuracy degrades when SNR becomes
lower. In the case, the number of noise-dominant frequency
bins increases, which results in injection of large noise into
the summation as shown in equation (2). To cope with this
problem, high SNR band selection based on cross spectral
power is proposed as an enhancement in [10]-[12]. But it is not
easy because of needs for accurate noise spectrum estimation
or other strict assumption regarding the target signal or noise.

III. PROPOSED METHOD

Unlike GCC'’s signal processing approach, a statistical ap-
proach is employed in the proposed method. In the approach,
the cross spectral phase in each frequency bin is considered as
a stochastic variable following a certain circular distribution.
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The center of the distribution is given by the expected value of
the cross spectral phase. The width of the distribution depends
on the reliability of the bin, in other words, reliable bins have
a sharp distribution. In the proposed method, the distribution
in the phase domain is translated into a bin-wise probability
density function (PDF) in the time difference domain. The
PDF of TDOA in total is given by the sum of all voted bin-
wise PDFs like kernel density estimation. As the proposed
method is based on phase and voting and its resulting PDF is
a similar to a cross correlation function, it is named Phase-
Voting Cross Correlation.

A. Bin-wise PDF

A bin-wise PDF is derived as the convolution of a
frequency-dependent periodic function and a kernel function
which give the center and the width of a circular distribution,
respectively. Use of the periodic function makes phase unwrap-
ping unnecessary. Figure 2 shows a bin-wise PDF at an angular
frequency w. In the figure, ¢(w) is a cross spectral phase of
the input signals, u,,(7) is a periodic function generated with
@(w), gw(7) is a kernel function, and p,,(7) is a PDF which is
the convolution of w,,(7) and g, (7). In the proposed method,
Gaussian function is adopted for the kernel function.

B. Kernel width control based on circular standard deviation

The width of the kernel function is determined according to
reliability of the frequency bin. For the bin whose reliability
is high, the width is made narrower to enhance the peak
of the bin-wise PDF. The proposed method employs circular
standard deviation [15] as an index of reliability. For each
frequency bin, circular standard deviation is calculated by
using the cross spectra obtained in past frames. The width is
then calculated based on the circular standard deviation, and
applied to the kernel function generation. Kernel width control
is effective when SNR varies across the bins. By considering
time-series stability of cross spectral phase, high SNR bins
can be identified.

Circular standard deviation is known as one of the common
measures of circular spread, and a key parameter of wrapped
normal distribution. As a bin-wise PDF is derived as the
convolution of a periodic function and the Gaussian function,
a cycle of the PDF is equivalent to the wrapped normal
distribution around the circumference of a circle. Therefore,
circular standard deviation can be used directly as the width
of the kernel function if Gaussian kernel is used.

C. Voting of bin-wise PDF

TDOA estimate is determined by voting the bin-wise PDFs
generated for all frequency bins as shown in Fig. 3. Peak
positions of the bin-wise PDFs for the target signal are
concentrated only at the target time difference because peak
positions for the noise totally differ among bins and periodicity
of peaks depends on frequency as shown in Fig. 2. Besides,
the peak of a bin-wise PDF for the target signal is sharper than
that for the noise thanks to the kernel width control. Therefore,
by voting the bin-wise PDFs, the peak position for the target
can be easily identified.
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D. Detailed procedure

Figure 4 shows a block diagram of the proposed method.
Compared to Fig. 1, blocks until normalization of cross
spectrum are the same as the conventional method. To avoid
convolution in the time domain, bin-wise PDF calculation and
voting are conducted in the frequency domain.

The input signals are first divided into frames, then cross
spectrum Si2(k,n) is calculated for each frame, where n is
a frame number. In bin-wise PDF calculation, mean u(k,n)
and circular standard deviation o(k,n) are given by

Slz k nfl)
LZ|512 on—1)]’ )

—2log |u(k,n)|. “4)

p(k,n)

olk,n) =

The spectrum and time difference of the target are assumed
stable during L frames. Based on phase linearization, the DFT
of a periodic function, Uy (h,n) where h = 0,1,..., H — 1,
is calculated with p(k,n) as follows.

Ml

h/k
n(k,n) B
Uk(h” TL) = { (‘H«(km,)\) ) hmodk=0 (5)
0, hmod k # 0
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Figure 5 illustrates the equation (5). (u(k,n)/|u(k,n)|)"* is
assigned for Uy (h,n) in h = k, 2k, 3k, .. .-th frequency bin
to form linear phase. Zero is assigned for the other frequency
bins. The DFT of a kernel function, G (h,n), is given by

o(k,n)? (2xh\>
Gr(h,n) = exp <—(ké) (2Hh> ) . (6)

Kernel functions for various standard deviations can be calcu-
lated in advance to reduce computational complexity.
The DFT of a bin-wise PDF, Py (h,n), is given by

P}c(h, n) = Uk(h,n)Gk(h,n). (7)

Py (h,n) is calculated for all frequency k = 0,1,..., K — 1.
DFT of total PDF, P(h,n), is obtained by voting (summing-
up) all bin-wise PDFs as follows.

K—
n) = Pi(h,n). ®)

Finally, the maximizer of the IDFT of P(h,n) is obtained as
TDOA estimate.
In a special case that the kernel function is defined by

_ k)], k=h
Guho) = { ¢ o ©)
and L = 1, then we have
P(h,n) = Up(hym)Gr(h,n) = pu(h, ) = 221 )
|S12(h,n)

from Egs. (3), (5), (7) and (8). Therefore, the proposed method
can be considered as an extended version of GCC-PHAT.

IV. EVALUATION

Evaluations were performed using two kinds of sounds
recorded at 48 kHz in real environments, one of which is
a small ship sailing in a bay, the other is a drone (small
multicopter) flying in a countryside. Cross correlation function
(CCF) of GCC-PHAT was compared as the conventional
method to PDF of the proposed method, PVCC. The lengths
of FFT and frame shift were 2048 and 1024, respectively.
Estimated TDOA was updated by 0.5 seconds (23 frames)
which was also used as averaging time for mean and circular
standard deviation. Distances and directions shown in the
following sections were obtained with measured GPS data.

A. Ship sound localization

Figure 6 illustrates the experiment setup for ship sound
localization. During sound recording, a small ship sailed from
port to sea. Recording time was 120 seconds. The direction of
the ship was around 54 degree which is equivalent to 14 lag
samples at 48 kHz sampling.

Figure 7 shows a spectrogram of the recorded sound. In
the figure, frequency components of the ship sound appear in
lower frequency surrounded by the dashed line and decay over
time. As time goes on, the SNR of the ship sound decreases.
Vertical line components in high frequency are noise sound
generated by waves of the sea.
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Fig. 6. Experiment setup for ship sound localization
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Fig. 7. Spectrogram of recorded sound (ship sound)

Figures 8 and 9 show evaluation results. In Fig. 8, CCF
and PDF are shown side by side. Comparing the two, PDF
has a clear peak found around 14 lag samples for all the time
while a clear peak of CCF appears only around the beginning.
Figure 8 shows TDOA estimated by the conventional and the
proposed methods. Root mean square errors (RMSE) of TDOA
estimation by the conventional and the proposed methods are
0.42 msec. and 0.16 msec., respectively. These two values
were calculated with the following equation.

N
2
E Ttrue — ,

where Ty, 1s the true TDOA, %(n) is the estimated TDOA
at a frame n, N is the number of frames.

RMSE = (11)

B. Drone sound localization

Figure 10 illustrates the experiment setup for drone sound
localization. During recording, a drone hovered in the air with
little movement. Recording time was 60 seconds. The direction
of the drone was around —37 degree equivalent to —39 lag
samples at 48 kHz sampling.

Figure 11 shows a spectrogram of the recorded sound. In
the figure, frequency components of the drone sound mostly
appear in lower frequency surrounded by the dashed line.
Vertical line components in high frequency are of insect
sounds. Figures 12 and 13 show evaluation results. In Fig.
12, CCF and PDF are shown side by side. Compared to CCF,
PDF has clearer peak found around —39 samples for all the
time. Figure 12 shows TDOA estimated by the conventional
and the proposed methods. RMSEs of TDOA estimation by
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Fig. 8. CCF by GCC-PHAT and PDF by proposed method
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Fig. 9. TDOA estimated by GCC-PHAT and proposed method

the conventional and the proposed methods are 0.53 msec. and
0.41 msec., respectively.

V. CONCLUSION

TDOA estimation based on phase-voting cross correlation
and circular standard deviation has been proposed. Based
on phase delay and kernel function, the proposed method
generates a PDF of TDOA for each frequency bin. TDOA
estimate is determined by voting the PDFs generated for all
frequency bins. Peak positions of the bin-wise PDFs for the
target signal are concentrated only at the target time difference
because peak positions for the noise totally differ among bins
and periodicity of peaks depends on frequency. Therefore, by
voting the PDFs for all frequency bins, the peak position for
the target can be easily identified. The kernel width of PDF
is determined by circular standard deviation of cross spectral
phase for each frequency bin. This width control enhances
peaks of PDFs for high SNR frequency bins since phases
for high SNR bins are more stable than those for low ones.
Evaluation with ship and drone sounds has shown that the
RMSE of TDOA estimation by the proposed method reaches
0.37 times that by GCC-PHAT.

1273



2017 25th European Signal Processing Conference (EUSIPCO)

20 40 Time [sec ]
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