
RAKE: a Simple and Efficient Lossless

Compression Algorithm for the Internet of Things

Giuseppe Campobello1, Antonino Segreto1, Sarah Zanafi2, Salvatore Serrano1

1Department of Engineering - University of Messina (Italy)
2Faculty of Science Tetouan, University Abdelmalek Essaadi (Morocco)

Abstract—In this paper we propose a new lossless compression
algorithm suitable for Internet of Things (IoT). The proposed
algorithm, named RAKE, is based only on elementary counting
operations and has low memory requirements, and therefore
it can be easily implemented in low-cost and low-speed micro-
controllers as those used in IoT devices. Despite its simplicity,
simulation results show that, in the case of sparse sequences, the
proposed algorithm outperforms well-known lossless compression
algorithms such as rar, gzip and bzip2. Moreover, in the case of
real-world data, RAKE achieves higher compression ratios as
even compared to IoT-specific lossless compression algorithms.

I. INTRODUCTION

Compression techniques are widely used in Internet of

Things (IoT) because they allow to reduce storage and band-

width resources [1], [2] and, moreover, to increase lifetime of

battery powered devices [3] [4].

In general, despite lossy compression algorithms allow to

achieve much higher compression ratios, lossless compression

algorithms are more widespread in several IoT scenarios [5].

For instance this is the case of IoT devices developed for

biomedical and health-related signals where it is necessary

to ensure that medically important details are not lost causing

errors in medical diagnosis [6].

Although several lossless compression algorithms exist, for

instance the well-known Lempel-Ziv algorithm [7], most of

them are not suitable when only limited storage and com-

putational resources are available [8]. This is the case of

wireless sensor networks (WSN), one of the key enablers

of the IoT paradigm, where nodes are based on low-speed

microcontrollers with just a few kilobytes of memory [9].

In this paper we present a simple and effective lossless com-

pression algorithm, henceforward named RAKE, that is able

to outperform conventional lossless compression algorithms.

Considering its inherent low complexity and memory require-

ments, RAKE is well suited for low-cost micro-controller and

embedded devices as those used in IoT.

Simulation results show that in the case of sparse bi-

nary sequences (i.e. sequences with many fewer ones than

zeros or vice versa) the proposed compression algorithm

well approaches the Shannon’s entropy bound [10] achiev-

ing higher compression ratios as compared to well-known

(and more complex) lossless compression algorithms such as

gzip [11], rar [12] and bzip2 [13].

Moreover, also in the case of real-world data, RAKE

achieves higher compression ratios as even compared to IoT-

specific lossless compression algorithms.

The proposed algorithm exhibits several other advantages:

• Simplicity: its implementation requires only elementary

counting operations;

• Limited Overhead: only few additional bits are needed

for encoding all parameters needed for decompression;

• Restrained Storage: RAKE does not rely on pre-stored

codewords: actually, only the original sequence and the

encoded sequence must be stored;

• Generality: Despite RAKE has been thought primarily

for compression of sparse binary sequence, we show that

it can be easily extended to sequence of integers.

The rest of this paper is organized as follows: in Sec. II

related works are discussed; in Sec. III the basic idea of

RAKE is introduced; in Sec. IV performance of RAKE and

other lossless compression schemes are compared. Finally,

conclusions and future works are drawn in Sec. V.

II. RELATED WORKS

When lossless algorithms are considered, the common

approach is to exploit temporal correlation and a simple

method is to use differences between two consecutive samples

(commonly called residues). As shown in [14] and references

therein, residues of different real-world data (temperature, hu-

midity, solar radiation, etc.) fit well with zero-mean Gaussian

or Laplace distributions. Consequently, the basic idea behind

several compression algorithms is to encode residues by using

a dictionary optimized on the basis of preliminary information

about data distributions.

Examples of dictionary-based approaches are:

• S-LZW [15] where the authors simplify the well-known

algorithm of Lempel-Ziv-Welch by taking into account

limited resources of sensor nodes. Basically, the algo-

rithm divides data into blocks of fixed size, and then

separately compresses each block by using a dictionary.

• SHuffman [16], where for each new sampled value, xi, the

residue ri = xi − xi−1 is calculated and encoded on the

basis of a variable length code. The SHuffman dictionary

for ri ∈ [−31, 31] is reported in Tab. I together with

the number of bits li needed for representing the related

codeword ci.
• ND-Encoding [17] uses a dictionary specifically designed

to achieve high compression ratios in the case of data with

Normal Distribution and small variance, i.e. σ2 ≤ 7 (see

Tab. I).

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2650

SHuffman ND-Encoding MinDiff*

ri (or di) ci li ci li ci li

0 00 2 00 2 00 2
-1,+1 010x 4 01x 3 01x 3

-3,-2,+2,+3 011xx 5 10xx 4 10xx 4
-5,-4,+4,+5 1000xx 6 110xx 5 11... 2+k
-7,-6,+6,+7 1001xx 6 1110xx 6 11... 2+k

-15,...,-8,+8,...+15 101xxxx 7 1111... 4+w 11... 2+k
-31,...,-16,+16,...+31 110xxxxx 8 1111... 4+w 11... 2+k

TABLE I
DICTIONARY OF SOME LOSSLESS COMPRESSION ALGORITHMS

A second class of algorithms is based on a predictive coding

approach. Basically, algorithms in this class are based on the

fact that in most cases it is sufficient to encode only those

residues, resulting from the difference between the predicted

value and the actual value, which falls inside a relatively small

range [−R,R] and to transmit the values outside this range (i.e.

outliers) as the original raw data. This approach is commonly

known as Two-Modal (TM) transmission [18].

The main problem of this approach is the ”huge” complexity

of predictive algorithms in comparison of the limited stor-

age and computational resources available in microcontroller-

based IoT devices. Despite it is possible to perform a pre-

diction within a node that is energy capable (i.e. the sink in

WSN), in the case of multi-hop networks, the energy consump-

tions (and delay) due to the necessity of forwarding update

messages with prediction parameters is a serious drawback.

Recently, a simple lossless compression technique that

combines the above approaches has been proposed in [9]. The

algorithm, named MinDiff*, exploits the fact that a simple

prediction can be done locally, directly on sensor nodes, using

the range of the actual set of data.

More precisely, the MinDiff* algorithm represents a set of

N residues, X = {r1, ..., rN}, originally encoded with w bits

each, with the set C = {µ, d1, ..., dN} where µ = min{ri}
and di = ri − µ with i ∈ [1, ..., N].

The differences di are firstly encoded with the minimum

number of bits k needed for their binary representation, i.e.

k = ⌈log2(max{di}+1)⌉. In a second step, the number of bits

needed to represent C is further reduced using the dictionary

shown in Tab. I.

In this paper we present a new lossless compression algo-

rithm named RAKE showing that it is able to outperform all

the above algorithms.

III. RAKE: BASIC IDEA

Many compression algorithms operate in two phases: in the

first phase, pre-processing techniques [19], [20] or transfor-

mations [21] are used to obtain sequences that are sparse in

some domains; in the second phase, sparsity is exploited in

order to achieve compression.

The proposed RAKE algorithm follows the same basic idea

by taking into account the limited computational resources of

IoT devices on both phases.

In particular, we show in the next Section that the RAKE

algorithm is a very efficient compression scheme for binary

RAKE

ri ci li

-1 1 1
+1 01 2
-2 001 3
+2 0001 4
...
-R 0...01 2R− 1

+R 0....01 2R

0 all zeros 2R

TABLE II
DICTIONARY OF THE RAKE ALGORITHM

sparse sequences. Therefore the RAKE algorithm can be

used in combination of every transformation or pre-processing

technique able to obtain a sparse binary sequence from the

original data set.

A possible solution is given by the dictionary shown in

Tab. II that is based on a variable length code where every

codeword has at most one set bit.

The reader might observe that the above dictionary can lead

to a very long binary sequence that could be not compatible

with the low memory resources available in IoT devices,

however we will show in the next Section how to avoid this

problem by using codeword lengths (i.e. li) instead of actual

codewords ci.

Formally, a n-bits sequence is said to be k-sparse if there

are only k << n non-zero values. Several algorithms already

exist able to effectively compress a binary sparse sequence. For

instance, the Positional Encoding (PE) algorithm [1] (which

encodes a k-sparse sequence of n bits with k·⌈log2(n)⌉ bits by

simply indexing positions of the set bits) and the Run-Length

Encoding (RLE) algorithm [2].

However, the RAKE algorithm uses a new (and more effi-

cient) encoding scheme. In particular, the proposed algorithm

can be explained by imagining a rake able to catch the set bits

one bit at the time (the name RAKE derives exactly from the

homonymous tool used in agriculture).

In particular, let us consider a T -teeth rake able to fork T
bits at a time and let us suppose that a codeword is generated

on the basis that a set bit is catched or not. More precisely,

• A single zero bit codeword is used to state that no set bit

is found under the rake (i.e. all forked bits are zeros).

Otherwise, if at least one set bit has been forked, a

codeword of L = 1 + ⌈log2 T ⌉ bits is generated. In

particular, the first bit of the codeword is set to 1 to state

that one set bit has been catched and the other ⌈log2 T ⌉
bits are used to encode its position (here identified as

pfirst and counted starting from 0 to T − 1).

• After that a codeword has been generated the rake moves

forward to catch other possible set bits. More precisely,

the position of the rake is shifted by pfirst +1 positions

when a set bit has been found or by T positions when

all bits forked were zeros.

The above operations are repeated until the rake reaches the

end of the sequence to be compressed. Finally, the compressed

sequence is obtained by concatenating all the codewords.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2651

s
RC

I)

0 0 0

IV)

III)

00 0 0 0 1 1 01 0 00

II)

X

X

V)

0

110

101

0

NO

YES

NO

X

Codep_{first}s:

1

set bits found

1011

2YES

YES

Fig. 1. Example of RAKE compression algorithm.

In Figure 1 is reported a simple example showing how a

sparse sequence of n = 15 bits, i.e. S = [010000001010000] is

compressed by the RAKE algorithm (with T = 4) to produce

a compressed sequence of 11 bits, i.e. SRC = [10101101010],
Let us illustrate in detail how the algorithm works.

In the first iteration, the initial T = 4 bits of the sequence

S (i.e. 0100) are considered. The second of these bits is set

(so that pfirst = 1) therefore the sequence 0100 is encoded

as 101, that is one bit used as prefix (i.e. 1) followed by the

binary representation of pfirst = 1 (i.e. 01, considering that

⌈log2(T)⌉ = 2 bits must be used for its binary representation).

At this point the initial position of the rake is shifted forward

by pfirst + 1 = 2 positions.

In the second iteration, four zero bits are forked; thus, on

the basis of the algorithm, a single 0 bit is used to encode

them and the rake is shifted forward by T = 4 positions.

In the third iteration the subsequence 0010 is found under

the rake. The third of these bits is 1 (i.e. pfirst = 2) therefore

the subsequence is encoded as 110 and the rake is shifted

forward by pfirst + 1 = 3 positions.

Similarly, in the forth iteration the subsequence 0100 is

encoded as 101 and the rake moves forward by 2 positions.

Finally, in the last iteration the subsequence 0000 is encoded

as a single bit 0. At the end of the execution, the compressed

sequence is obtained by concatenating all the codewords.

The RAKE algorithm can be effectively combined with the

precoding phase (i.e. the dictionary in Tab. II) so that only

the compressed and the incoming sequences have to be stored.

This is shown in Fig. 2 where a Matlab code able to implement

both phases is reported.

As regards decompression, the original binary sequence can

be recovered from a compressed sequence as follows:

• Every time a bit 0 is read it is decoded as a sequence of

T zeros;

• Every time a bit 1 is read, the next L − 1 bits are

considered. In particular a number x is obtained as the

decimal representation of the binary number encoded in

these L − 1 bits. Then, a sequence of x bits set to 0 is

decoded followed by a bit set to 1.

A. Length of the compressed sequence

It is worth observing that the length of the compressed

sequence, henceforward indicated as bRAKE , is maximum

function [Sout] = RAKE(Xin)

r = [0,-1,diff(Xin)]; l_bits = abs(r)*2 - (r < 0);

z_bits = max(l_bits); K = sum(l_bits ˜= 0);

N = sum(l_bits) + sum(l_bits == 0)*z_bits;

L = ceil(log2((N/K - 1)*log(2)))+1; T = 2ˆ(L-1);

Sout = [de2bi(Xin(1), 16), de2bi(L,4)]; % Header

cnt_z = 0;

for i=1:length(r)

if (r(i) == 0) cnt_z += z_bits; one_found = 0;

else cnt_z += l_bits(i) - 1; one_found = 1;

end

while (cnt_z >= T)

Sout = [Sout, 0]; cnt_z = cnt_z - T;

end

if (one_found)

Sout = [Sout,1,de2bi(cnt_z, L-1)]; cnt_z = 0;

end

end

if(cnt_z > 0) Sout = [Sout, 0]; end;

end;

Fig. 2. Matlab-like code for joint econding and RAKE compression

when the overall number of rake operations needed to catch all

the bits 1 is maximum. For a fixed value of k this worst case

occurs when the uncompressed sequence S starts with a single

burst of k consecutive ones, i.e. S = [1, 1, 1, ..., 1, 0, 0, 0, ...0].
In fact, in this case, the RAKE algorithm encodes the first k
bits with L bits each, whilst the remaining n− k consecutive

zeros are catched with the maximum number of rake opera-

tions, i.e. ⌈n−k
T

⌉, so that bRAKE = k · L+ ⌈n−k
T

⌉.

Obvioulsy for all the other sequences will be

bRAKE ≤ k · L+ ⌈
n− k

T
⌉ (1)

If we restrict the possibile values of T only to the powers of

two so that T = 2L−1, the previous relation can be rewritten

as bRAKE < f(T) where f(T) = k ·(1+log2(T))+
n−k
T

+1.

In order to choose a convenient value of T , we consider

the one which minimizes the function f(T). Accordingly, by

solving the equation
df(T)
dT

= 0 with respect to T , we obtain

T ∗ = (
n

k
− 1) · ln(2) (2)

So, throughout the rest of the paper we will consider L =
⌈log2(T

∗)⌉+ 1 and T = 2L−1.

B. RAKE complexity and compression overhead

As regards the complexity of the RAKE algorithm, it is

possible to observe that only counting operations are required

for its implementation and that the number of iterations needed

for its execution is in the order of O(n
T
) = O(k). Moreover,

as regards the storage requirements, only the compressed

and the incoming sequences have to be stored. Accordingly,

requirements in terms of storage are restrained.

In order to perform a successful reconstruction of the

original sequence S, the value of T must be known at the

receiver; thus this value have to be encoded and sent together

with the compressed sequence, leading to an overhead of h
bits. Considering that T is constrained to be a power of two,

i.e. T = 2L−1, it is possible to obtain the value of T from L.

In this case we have h = ⌈log2(L)⌉ = O(log2(log2(
n
k
))) bits

that is a really small overhead.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2652

IV. COMPARISON RESULTS

In this section we compare the performance achieved by the

proposed RAKE compression algorithm with those of other

lossless compression algorithms.

To this purpose, the following metrics are considered:

• Compression Ratio (CR) defined as the ratio between the

number of bits before and after compression i.e.,

CR =
Numberof bitsBEFOREcompression

Numberof bitsAFTERcompression
(3)

In particular we indicate with CRopt the maximum loss-

less compression ratio that can be achieved with an ideal

lossless algorithm able to reach the Shannon’s entropy.

• Compression Efficiency (CE%) defined as

CE% = 100 · (1−
1

CR
) (4)

A. RAKE for sparse sequences

In this subsection we compare compression ratios achieved

with the RAKE algorithm and other lossless compression

algorithms in the case of sparse sequences.

In particular, in Tab.III we report the mean compression

ratios of several lossless algorithms obtained considering 100

random files of 10KB each (i.e. n = 80000 bits) with different

sparsity ratios p = k/n (note that files of different lengths have

been used for tests by obtaining similar results not reported

here for sake of space).

From Tab.III it is possible to observe that the compression

ratio achieved by RAKE is better than what can be obtained

with other compression algorithms.

It is worth noting that the value of CRRAKE approaches

the maximum compression ratio that could be obtained

with an ideal entropy encoder, i.e. CRopt = 1
H

where

H = p · log2
1
p
+ (1− p) · log2

1
1−p

is the Shannon’s entropy

for binary memoryless sources.

In particular, for all p up to 0.2, CRRAKE differs from

CRopt by only a few percent (< 4%). Instead, for all the other

algorithms the difference is at least [15− 25]%. Accordingly,

we can state that in case of sparse sequences the RAKE

algorithm is the one which achieves the best performance.

Finally, it is worth noting that there are not appreciable

differences among the compression ratios achieved by RAKE

and more complex algorithms when p ≥ 0.25 (note that CRs

for p > 0.25 are not shown for sake of space).

TABLE III
COMPRESSION RATIO OF DIFFERENT COMPRESSION ALGORITHMS FOR

DIFFERENT VALUES OF THE SPARSITY RATIO p = k/n.

p
Algorithm 0.002 0.005 0.01 0.05 0.1 0.15 0.2 0.25

CRopt 48.0 22.0 12.4 3.5 2.1 1.6 1.4 1.2

CRRAKE 47.4 21.5 12.0 3.5 2.1 1.6 1.4 1.2

CRrar 22.1 12.1 7.4 2.6 1.7 1.4 1.2 1.2

CRgzip 21.4 11.8 7.4 2.6 1.8 1.4 1.3 1.2

CRbzip2 26.0 14.2 8.7 2.6 1.7 1.3 1.2 1.1

CRPE 29.5 11.9 5.9 1.2 0.6 0.4 0.3 0.2

CRRLE 35.7 15.7 8.4 2.1 1.2 0.9 0.8 0.6

B. RAKE for real-world data

In this subsection we consider real-world data obtained by

the Intel Berkeley Research laboratory [22], regarding indoor

weather conditions, and the outdoor micro-meteorology data

of the Willow Creek Tower [23].

The Berkeley database have timestamped topology infor-

mation, along with humidity, temperature, light and voltage

values collected from 54 sensors once every 31 seconds. As in

[17], three different sensor nodes (node 3, 8 and 19) and two

physical variables (temperature and relative humidity) have

been considered for evaluation. In the case of the Willow

Creek Tower database, outdoor temperature and humidity data

have been collected every 30 minutes, so large variations

exist among consecutive samples. More detailed statistical

information about the above data sets are reported in [9].

As done in [17] and [9], compression efficiencies have

been evaluated considering, for each physical variable, a set

of 10000 data divided into 100 blocks of 100 words each

and represented with w = 16 bits. The achieved compression

efficiencies are reported in Fig. 3 and in Fig. 4. Note that bold

horizontal lines represent the ideal maximum efficiencies im-

posed by the Shannon’s entropy, i.e. CEopt = 100·(1−H/w),
where the entropy H =

∑
i pi log2(

1
pi

) has been calculated

accordingly to the frequencies of the residues ri.
As it is possible to observe in all cases RAKE has better

mean and maximum compression efficiencies.

The reader might observe that in the case of indoor data the

improvement of RAKE with respect to the MinDiff* algorithm

is modest (i.e. ∼ 2%). However it should be considered that

performance of both algorithms are quite near the maximum

efficiency CEopt, so further improvements are difficult to be

achieved due to the lossless constraint.

Instead, in the case of outdoor data, the compression ef-

ficiency obtained with the RAKE algorithm is considerably

greater (i.e. 20 − 25%) than all the other compression algo-

rithms (even in comparison to more complex algorithms such

as gzip and rar, as shown in Fig. 4(b)).

V. CONCLUSION

In this paper we have presented a simple and effective

lossless compression algorithm, named RAKE. Using only a

simple dictionary and counting operations, RAKE is able to

outperform existing solutions even when different data sets

and different physical parameters are considered. Moreover,

considering its inherent low complexity and memory require-

ment, it is well suited for IoT devices. As future works we will

apply RAKE to other types of IoT-related signals (i.e. images

and biomedical signals) and we will derive further theoretical

results about its complexity and performance.

REFERENCES

[1] D. Salomon and G. Motta, Handbook of Data Compression (5.ed.).
Springer, 2010.

[2] K. Sayood, Introduction to data compression (4.ed.). The Morgan
Kaufmann series in multimedia information and systems, 2012.

[3] G. Campobello, S. Serrano, L. Galluccio, S. Palazzo, “Applying the
chinese remainder theorem to data aggregation in wireless sensor
networks,” IEEE Communications Letters, vol. 17, pp. 1000–1003, 2013.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2653

Node SH ND TM MinDiff* RAKE Ideal
max/mean/min max/mean/min max/mean/min max/mean/min max/mean/min mean

[%] [%] [%] [%] [%] [%]

3 79/72/64 82/73/44 73/66/50 81/74/58 86/76/58 78

8 80/74/64 83/76/45 83/73/45 85/76/56 87/77/58 80

19 78/72/63 82/71/41 72/66/50 80/73/54 85/75/53 77

SH ND TM MD* RK SH ND TM MD* RK SH ND TM MD* RK
35

40

45

50

55

60

65

70

75

80

85

90
Node3 Node 8 Node 19

(a) Compression efficiencies for indoor temperature data.

Node SH ND TM MinDiff* RAKE Ideal
max/mean/min max/mean/min max/mean/min max/mean/min max/mean/min mean

[%] [%] [%] [%] [%] [%]

3 77/72/59 81/74/20 79/70/33 80/74/60 83/75/60 78

8 81/75/62 84/76/38 75/66/31 85/76/55 87/77/62 80

19 81/74/66 84/76/53 85/71/52 82/75/66 87/77/55 79

SH ND TM MD* RK SH ND TM MD* RK SH ND TM MD* RK

20

30

40

50

60

70

80

90
Node3 Node 8 Node 19

(b) Compression efficiencies for indoor humidity data.

Fig. 3. Compression efficiencies of WSN-specific compression algorithms in the case of real-world indoor data (Intel Berkeley labs’ data set).

Data set SH ND TM MinDiff* RAKE Ideal
max/mean/min max/mean/min max/mean/min max/mean/min max/mean/min mean

[%] [%] [%] [%] [%] [%]

Temp. 35/13/1 -16/-23/-25 33/24/13 36/27/17 45/32/27 35

Hum. 81/19/-24 81/17/-25 69/23/-6 81/32/5 92/40/14 47
(a) Compression efficiencies of WSN-specific compression algorithms.

Data set CEgzip[%] CEbzip2[%] CErar[%] CERAKE [%]

Temp. 3.8 4.3 28.0 32.1

Hum. 36.7 35.4 36.4 40.2
(b) Mean compression efficiencies of general purpose compression algorithms vs RAKE. SH ND TM MD* RK

−30

−20

−10

0

10

20

30

40

50

(c) Temperature

SH ND TM MD* RK

−20

0

20

40

60

80

(d) Humidity

Fig. 4. Compression efficiencies in the case of real-world outdoor data (Willow Creek Tower’s data set).

[4] G. Campobello, A. Segreto, and S. Serrano, “Data gathering techniques
for wireless sensor networks,” Int. J. Distributed Sensor Networks, vol.
2016, pp. 1–17, Mar. 2016.

[5] M. Vecchio, R. Giaffreda, and F. Marcelloni, “Adaptive lossless entropy
compressors for tiny iot devices,” IEEE Transactions on Wireless Com-

munications, vol. 13, no. 2, pp. 1088–1100, February 2014.

[6] E. Chua and W. C. Fang, “Mixed bio-signal lossless data compressor
for portable brain-heart monitoring systems,” IEEE Transactions on

Consumer Electronics, vol. 57, no. 1, pp. 267–273, February 2011.

[7] “LZWC: Lempel-Ziv-Welch Codec.” [Online]. Available:
http://sourceforge.net/projects/lzw/ (rev 1.4)

[8] K. C. Barr and K. Asanovic’, “Energy-aware lossless data compression,”
ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 250–291, 2006.

[9] G. Campobello, O. Giordano, A. Segreto, and S. Serrano, “Comparison
of local lossless compression algorithms for wireless sensor networks,”
J. Network and Computer Appl., vol. 47, no. C, pp. 23–31, Jan. 2015.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[11] “Gzip Home Page.” [Online]. Available: http://www.gzip.org (ver 1.6)

[12] “RAR Home Page (www.win-rar.com).” [Online]. Available:
http://www.rarlab.com (ver 5.3)

[13] “Bzip2 Home Page.” [Online]. Available: http://www.bzip.org (ver
1.0.6)

[14] T. Srisooksai et al., “Practical data compression in wireless sensor
networks: A survey,” Journal of Network and Computer Applications,
vol. 35, pp. 37–59, 2012.

[15] C. M. Sadler and M. Martonosi, “Data compression algorithms for

energy-constrained devices in delay tolerant networks,” Proc. SenSys

’06: 4th Int. Conf. on Embedded networked sensor systems, pp. 265–
278, 2006.

[16] F. Marcelloni and M. Vecchio, “A simple algorithm for data compression
in wireless sensor networks,” IEEE Communications Letters, vol. 12,
no. 6, pp. 411–413, 2008.

[17] R. Xuejun and F. Dingyi, “A normal distribution encoding algorithm for
slowly-varying data compression in wireless sensor networks,” 6th Int.

Conf. on Wireless Communications, Networking and Mobile Computing

(WiCom2), pp. 1–4, 2010.
[18] Y. Liang and W. Peng, “Minimizing energy consumptions in wireless

sensor networks via two-modal transmission,” ACM SIGCOMM Com-

puter Communication Review, vol. 40, no. 1, pp. 13–18, 2010.
[19] J. Pinho, “An online preprocessing technique for improving the lossless

compression of images with sparse histograms,” IEEE Signal Processing

Letters, vol. 9, no. 1, pp. 5–7, 2002.
[20] M. Iwahashi, H. Kobayashi and H. Kiya, “Lossy compression of sparse

histogram image,” in ICASSP’12, 2012, pp. 1361–1364.
[21] R. J. Cintra and F. M. Bayer, “A DCT approximation for image

compress,” IEEE Signal Processing Letters, vol. 18, pp. 579–582, 2011.
[22] “Intel Berkeley lab Sensor’s data.” [Online]. Available:

http://db.csail.mit.edu/labdata/labdata.html
[23] K. J. Davis et al., “ChEAS: Chequamegon

Ecosystem Atmosphere Study.” [Online]. Available:
http://cheas.psu.edu/data/flux/wcreek/wcreek2000 met.txt

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2654

