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Abstract—Teaching implementation of digital signal 

processing systems plays a very important role in recent 

technical education. The multi-core digital signal processor 

(DSP) is a new type of architecture widely used now in the 

industry. A new course on multi-core DSP programming is 

considered in this paper. The lab experiments are described. 

The course has been developed for the TMS320C6678 multi-

core DSPs. This paper provides educators with a content that 

cover theoretical and technical skills that are required by 

industry.  
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I. INTRODUCTION 

The adoption of courses on the practical implementation 
of digital signal processing systems into educational 
programs on Electrical & Electronic Engineering or 
Computer Science is widely used in universities. Many such 
courses have already been developed for different hardware 
platforms, including general-purpose processors (GPPs) [1-
3], field programmable gate arrays (FPGAs) [4, 5], graphical 
processing units (GPUs) [6] and digital signal processors 
(DSPs), which are historically the first integrated circuits 
specially designed to solve digital signal processing tasks in 
real-time with low-power consumptions. The educational 
courses on DSP programming are described in [7-11]. In this 
paper we concentrate on multicore (DSPs). 

During the last decades, DSP has evolved dramatically, 
moving from a single chip with one core to a multi-core 
heterogeneous System-On-a-Chip (SoC). The processor 
industry stepped to multi-core architectures in the second 
decade of the 21st century [12-13]. The multi-core approach 
tried to solve the problem of higher computations while 
staying low power, but it produced a lot of new problems, 
including algorithm parallelization, multi-core programming 
and parallel threads synchronization. Multi-core gave new 
challenges to universities. Previous courses had to be 
updated or new ones had to be developed. It became 
necessary to give much more information to students within 
the course. New terms and new principles started to be used. 
New architectural components such as new instructions, new 
peripherals, new bus structure and hardware accelerators 
appeared. On the software side, new programming tools 

started to be used such as Open Multi-Processing (OpenMP) 
and Open Computing Language (OpenCL).  

In this paper, a new educational course on multi-core 
DSP programming is considered. The goal of the course is to 
give students a knowledge base on modern approaches to 
multi-core DSP software development. The structure of the 
course is offered. The laboratory experiments are designed 
and described. The course has been developed for the 
TMS320C6678 multi-core DSP from Texas Instruments 
(TI).  

The paper is divided into six sections. After the 
introduction, the laboratory infrastructure including 
laboratory equipment and software tools is described in 
Section II. Section III considers the details of lab 
experiments. The course project which students do to 
consolidate the knowledge is described in Section IV. 
Section V deals with assessment aspects. Finally, some 
conclusions are made in Section VI. 

II. LABORATORY INFRASTRUCTURE 

A dedicated digital signal processing laboratory 
supporting the development of real-time software is used for 
teaching multi-core DSP programming. The laboratory is 
equipped with EVM C6678 evaluation boards [14]. The 
diagram of that board is illustrated in Fig. 1. The board is 
based on TMS320C6678 DSP. This is an 8-core 
homogenous processor with all cores of the same type. Each 
core is a powerful 1-GHz DSP with very long instruction 
word (VLIW) architecture capable of 32 milliard multiply-
accumulate operations per second (GMACS) in a fixed-point 
arithmetic and 16 milliard floating-point operations per 
second (GFLOPS) in a floating-point arithmetic. So each 
core is a high performance state-of-the-art device and 8 cores 
on one chip make it possible to increase its productivity 8 
times theoretically. During the labs, students learn how to 
achieve this maximum level of performance and analyze the 
reasons which limit the performance in practice. 

The board does not contain any analog-to-digital 
convertor (ADC), so it can not be used for direct analog 
signal processing. It has a number of digital interfaces 
instead including Ethernet, PCIe and SRIO, Hyperlink and 
some others. It also includes 512 Mbytes of DDR3 memory 
to store data and code. During the labs the following 
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Fig. 1.  Block diagram of TMS320C6678 evaluation board 

approach is used. A model of a signal is generated and stored 
into DDR3 onboard memory. This generation is performed 
on a personal computer or on the board but cannot be 
accomplished in real-time.After the data are ready in the 
external memory, real-time signal processing can take place. 
The results are also stored into DDR3 memory. The results 
are verified and processing time is measured. 

Software in the laboratory includes Code Composer 
Studio (CCS) integrated development environment (IDE) 
and software development kit (SDK) from TI that give all 
the instrumentations required for multi-core DSP 
programming. The MATLAB environment is an additional 
specialized software component used in the laboratory for 
input signal generation and output signal analysis and 
visualization. The board and student workplace in the 
laboratory are shown in Fig. 2.  

III. LAB EXPERIMENTS 

The course contains the lectures and the lab experiments. 
The required theory is given to the students at the lectures 
and the labs allow students to consolidate the knowledge 
with practice. The following lab experiments are offered to 
the students throughout the course fully reflecting the 
contents of the course (Fig. 3 and 4). 

A. Lab #1. Introduction to CCS 

The general task of real-time digital signal processing is 
discussed at the beginning of the course. Fast repetitive 
multiply-accumulate (MAC) calculation is stated to be the 
key to efficient signal processing implementation, and the 
programming of the processor is considered as a basic way 
to digital design. 

A simple program is written in C-language during the lab 
#1. The program implements a dot product of two pre-
calculated vectors – 128-length floating-point format 
coefficients and signal samples. The program is written as a 
CCS-project. It is compiled and loaded onto the DSP on the 
board. It is run and gives some predefined results. 

During the lab students get knowledge of how to work in 
CCS, how to connect to the real hardware, and how to run 
their code on DSP. Only one-core is used at this stage. 
Students implement a basic digital signal processing 
example. They also measure the processing time with cycle-
count registers and make some statements about real-time 

Fig. 2. The board and the workplace in the laboratory 

processing. So, the lab #1 is an introduction to the tools and 
DSP programming in general. 

B. Lab #2. Architecture 

The architecture of the TMS320C6678 DSP with special 
attention paid to single core architecture is considered at the 
lectures and is better understood during lab #2. The 
computational power of the TMS320C6678 as of any other 
multi-core processor is achieved not by the number of cores 
but by the architecture of each of the cores. Moving from 
single to eight cores theoretically gives eight times the 
performance gain, but such a gain is not achievable in 
practice. Single-core software optimization is able to give 
much better results. One should not think about a multi-core 
processor as a computational machine capable of solving any 
computational problem efficiently. A good single core 
solution should be achieved first and then eight-core 
implementation can be started. All computational capabilities 
and limitations are concentrated inside the core. It is very 
important to explain to students these aspects of working 
with multi-core. This is the reason the course is started from 
the single core architecture description and its influence on 
the overall device performance. 

During the lab #2, students modify the program from lab 
#1 rewriting the dot product function in assembly and calling 
it from C-project. The assembly code is written for the 
floating-point arithmetic case. The execution time is 
measured and compared with the maximum DSP 
capabilities. 

C. Lab #3. Optimization 

The course continues with single-core optimization. It is 
very important to explain to students that multi-core 
implementation does not make sense if the code for a single 
core is not optimized. Optimization is considered as a 
process of software improvement aimed at one of the 
optimization criteria. Typical criteria are processing time and 
code size. The processing time optimization criterion is 
considered throughout the course as it is the most common 
requirement. Optimization and debugging join together into 
a common process of software development. 
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Fig. 3. Course structure 

Fig. 4. Course main steps 

During the lab, students implement the dot product 
function with hand-optimized assembly. They learn how to 
use VLIW DSP architecture more efficiently with parallel 
instructions and software pipelining technique. Processing 
time decreases from 2700 processor cycles to 70 cycles, 
which means about 40 times performance gain with single-
core optimization. 

Optimization in C is accomplished then for the same dot 
product function. The efficient code is generated by the 
compiler with optimization property turned on. Compiler 
feedback is analyzed. Additionally, C extensions including 
pragma directives and keywords are used to achieve 
processing time similar to hand optimized assembler [15]. 

D. Lab #4. OpenMP 

The course moves from single to multi-core 
implementation at this stage. Introduction to parallel 
processing is given first during lectures. Basic parallel 
computing notions are considered including parallel threads, 
data racing, thread synchronization, shared memory accesses 
and cache coherency. 

First multi-core project is accomplished with the 
OpenMP technique as the simplest way of software 
parallelization. The dot product function becomes too simple 
to be implemented on several cores, so students move to a 
more complicated task of finite impulse response (FIR) 
filtering. A frame of input samples is generated in advance 
and loaded into the shared memory. FIR coefficients are also 
known and preloaded into the memory. Simple sinusoidal 
signals are used to test the program. The length of a frame 
can be about several thousands and the length of impulse 
response is 128. FIR-filtering is performed based on the dot 
product function written and optimized within previous labs. 
Execution times of single- and multi-core implementations 
are measured and compared.  

It is very important for the students at this first stage of 
multi-core programming to realize that multi-core overheads 
always take place and this should be in mind during 
parallelization strategy selection. To study this, students 
perform parallelization at different levels. In the case of the 
FIR-filter, they can choose a different frame length. The 
greater the length, the more computations are performed 
independently, resulting in a higher processing time to 
parallelization overhead ratio. 

E. Lab #5. IPC 

The same task of FIR-filtering is performed then with 
another method of parallel software design called Inter 
Processor Communication (IPC). In a broad sense, IPC is a 
common name for any communication between cores. But 
talking about TI’s processors, the user should think of IPC as 
a software package of modules developed by Texas 
Instruments to enable inter processor communications for a 
variety of TI’s processors (not only DSPs). 

Students develop two projects: one for the master core 
and another one for all slave cores. The master core makes 
data ready and performs general configuration. Then the 
master core sends messages to the slave cores. These 
messages bring information about which data should be 
processed by slave cores: a pointer to the beginning of data 
chunks inside input buffer, the length of chunks and a pointer 
to a part of the output buffer, slave cores have to calculate. 
This is done with MessageQ module APIs. Then the master 
core waits for the response from all slave cores. Slave cores 
send messages to the master core with information about 
their readiness for processing. The master core notifies slave 
cores that they may start processing. This is done with Notify 
module APIs. All cores make their part of calculations. They 
are synchronized again after they finish the processing.  

Students verify the result of multi-core filtering and 
measure the time for signal processing. This time can be 
compared to the single core processing time and to the 
OpenMP parallel processing time. 

F. Lab #6. Multicore Navigator 

Many modern multi-core architectures use special 
hardware to facilitate fast data movements and job 
distribution inside the chip [16, 17]. The multicore Navigator 
achieves this in the TMS320C6678 DSP. It manages fast and 
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flexible data movements inside the multicore system and 
coordinates the work of the cores. Students study data 
movement with the Navigator during lab #6. Lab #7 
considers the second function of the Navigator – job 
distribution with the Open Event Machine (OpenEM). 

The task is still the same. FIR-filtering is performed and 
parallelized into 8 cores of C6678 DSP. The parallelization 
strategy is similar to the IPC case but special hardware (the 
Navigator) is used. Again we do not move any data that 
should be processed. The input signal is located in the shared 
memory and the output signal is written to the shared 
memory too. The multicore Navigator is used to send 
processing information from the master core to the slave 
cores and to perform synchronization. 

There are two possible ways to program the multicore 
Navigator: to do it through registers directly or to use TI’s 
low level drivers. It is better to start with registers to 
understand how to work with the Navigator. But to make it 
easier to work with registers, we implemented some kind of 
API that is low enough to show how to program the 
multicore Navigator through registers but high enough not to 
bother students with writing to registers themselves.  

When the laboratory is completed, students can compare 
the resulting processing time with that previously received in 
the OpenMP and IPC labs. These results show that, working 
at a low level with hardware modules, the best performance 
is achieved. 

G. Lab #7. OpenEM 

OpenEM is an open standard for systems with dynamic 
tasks distribution. It allows the dispatch of dynamically 
created tasks between cores in multicore systems. Texas 
Instruments implement OpenEM for their multicore DSPs 
using capabilities of the multicore Navigator hardware. 
Actually, OpenEM is implemented as a firmware for PDSP 
(Packed Data Structure Processor) which is a part of the 
multicore Navigator. OpenEM utilizes the multicore 
Navigator resources which is the reason we talk about using 
OpenEM after the multicore Navigator despite being easier 
to use and to understand. 

After the concept of OpenEM is given and all the 
necessary details are discussed at the lecture, students go 
through the laboratory practice. The task for the laboratory is 
still the same – perform signal frame filtering with 
computation distributed across 8 cores. The input signal 
frame consists of 8128 samples and is loaded into the 
internal shared memory. The output buffer has a length of 
8000 samples and is also located in the shared memory. A 
128-coefficient filter impulse response is located in the local 
memory of each core. The master core configures the 
system, including OpenEM. The master core creates 
OpenEM events. There are two event queues. One queue 
includes processing events. There are 8 of them, so each 
event can be processed on a separate core. Processing events 
includes information about what to process (a pointer to a 
part of the input buffer, buffer length, a pointer to a part of 
the output buffer). All cores process the events. It means they 
do filtering. The second event queue is processed then. The 

events in the second queue just signal the cores that they may 
stop. The master core outputs the results and time of 
processing. 

IV. COURSE PROJECT 

The course project is accomplished by students to 
consolidate their knowledge and to apply it to practical tasks. 
Students accomplish the project individually. The theme of 
the project depends on the program students are studying. 
We will consider here an example of a project which is 
offered to the students studying for communications.  

The task of signal demodulation is solved by students 
during the course project. A teacher gives students signal 
records in a raw data format. Each signal is a phrase recorded 
with the MATLAB. It has a duration of several seconds and 
is recorded at a sampling frequency of 70-100 kHz. The 
spectrum of speech is moved to a carrier frequency which is 
about 20 kHz. Additionally, some narrowband noise is added 
to the signal. The spectrums of the speech and the noise do 
not overlapped. Students have to restore the phrase. They 
demodulate the signal multiplying it by a harmonic and do 
FIR filtering. Both procedures should be implemented on a 
single core first. The software should be optimized. Multi-
core implementation should be implemented then with any 
two different parallelization techniques, for example, 
OpenMP and IPC. No strict requirements to the final 
software are defined. Students are free to choose the limits 
for the optimization and to select parallelization schemes. 

V. COURSE ASSESSMENT 

Much information is given to the students during the 
course and the materials are difficult enough. That is why 
formative assessment is absolutely necessary during the 
course allowing a check to ensure that the students 
understand the materials. The formative assessment is built 
upon the lab experiments. A teacher and his assistant check 
if students complete the labs successfully. Moreover, each 
lab is defended by the students in the oral form. The teacher 
(or the assistant) have to confirm that the students understand 
the lab. The formative assessment does not influence the 
final grades and is used just to control the intermediate 
results of learning. 

The summative assessment includes a presentation of the 
course project and a final exam. Each student prepares a 
report on the course project in a printed form. Retrieved 
signal records are also prepared by the students. The teacher 
reviews the reports and checks if the signal is retrieved 
correctly. Then, the course project is defended in an oral 
form. The originality of the report, the correctness of 
software and the understanding of the materials by the 
students are taken into account during project grading. 

Finally, the students pass an exam. The exam is passed in 
an oral form. This gives the final grades to the students. 

VI. CONCLUSION 

An educational course on multi-core DSP programming 
is considered in this paper. The structure of the course is 
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offered and the results are described. To stay relevant and to 
become more efficient, the course has to be modified 
regularly. More advanced courses can include heterogeneous 
multi-core programming and operating systems. 
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