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Abstract—Clock frequency estimation is a key issue in many
signal processing applications, e.g. network clock estimation in
wireless sensor networks. In wireless systems or harsh envi-
ronments, it is likely that clock events can be missed and,
therefore, the observed process has to be treated as a sparse
periodic process. To parameterize the clock, current research
is applying periodogram estimators at a complexity of at least
O(N logN). We introduce a highly accurate iterative frequency
estimator for pulse signals with low computational complexity.
An unbiased frequency estimator is presented with a complexity
of O(N). Furthermore the mean square error (MSE), which is
proportional to O(N−3) is derived and it is shown by theory and
simulation that this estimator performs as well as periodogram
based methods. The work concludes with simulations on sparse
and non-sparse processes including a discussion of the application
of the method.

I. INTRODUCTION

An important task in signal processing is the estimation
of the fundamental frequency of pulse signals. Many applica-
tions require this task regularly, as there are wireless sensor
networks (WSNs), Internet-of-Things (IoT), localization and
other similar applications. WSNs need high quality clock
estimation e.g. to sample synchronously during offline time, to
reduce synchronization discontinuities after long offline time
or reducing synchronization error. Usually, high accuracy is
linked to high complexity which is a contradiction to low
power sensor nodes [1]. Nevertheless, energy efficiency and
synchronicity is a vital demand for many systems [2], [3]
and, therefore, we present an O(N) complexity algorithm,
albeit state-of-the-art algorithms with the same clock fre-
quency estimation accuracy feature at least a complexity of
O(N logN) [4]. The algorithm can be used for frequency
estimation in sparse and non-sparse processes. Here, we point
out the advantages of the algorithm. (i) Low complexity means
a fast execution time, also when using simple hardware with
low memory requirement. (ii) At every sample interval, one
new frequency estimate is available. (iii) Integration of a-priori
knowledge to frequency estimation by initializing the iterative
algorithm. (iv) The improvement of accuracy or sampling rate
of the input signal does not increase computation time, if the
number of samples N remains unchanged.

Most other high accuracy methods operate on a frequency
domain representation of signals, e.g. Fourier transform, power
spectral density estimation and others. In the special case
of identifying the fundamental frequency, one of the most

common methods is the periodogram Iy(f) estimation [5]–
[7] by

f̂P = arg max
f∈{∆f}

Iy(f). (1)

Actual research [4] show a variance of the estimation er-
ror according to O(N−3) at a computational complexity of
O(N log(N)). The spectral range of ∆f is used to guaran-
tee identifiability [4], [8] and N is the number of samples
considered. As we focus on pulse signals, recent research
on frequency estimation of cyclostationary signals is relevant.
Cyclic spectrum estimation is presented in [9] and [10] that can
be used to estimate the fundamental frequency. The MSE is
similar to or better than periodogram estimates and is propor-
tional to O(N−2(1+µ)) with µ > 1/3. As for the periodogram
method, there exists a search window ∆f in the frequency
domain which has to be defined previously. In addition to
that, a computational complexity of O(N log(N)) can be
reached with this method. In our work, we avoid a maximum
search and any frequency transform. Surprisingly, by using
only time domain information, we reach the same estimation
performance as with frequency domain methods. The work is
organized as follows: We give a brief introduction to the signal
structure in section II-A and II-B. The estimation method for
the sparse process is presented in section III-A, where the
estimator itself and its properties are derived, followed by the
estimator of the non-sparse process, which is introduced in
section III-C as special case of the sparse process estimator.
In section IV, the simulations and comparisons with other
methods are introduced. Finally, the results are summarized
in the conclusion.

II. PROCESS MODEL

A. Periodic Pulse Process

In real world applications, we often observe periodic pro-
cesses as periodic pulse processes. Therefore, the function
space

a(t) =
∞∑

n=−∞
rect

(
t− nP + e(t)− φ

D

)
+ n(t) (2)

with t ∈ R as time variable is considered as basic model.
The process parameters are the period P and duration D
with 0 < D < P < ∞. φ ∈ R is considered as random
phase. e(t) and n(t) are additive phase and amplitude noise
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distributed according to N (0, σe) and N (0, σn) respectively.
We want to estimate the fundamental frequency fP of the
process. Therefore, the state changes of the pulse process are
used as input of the estimator. The observation of state changes
is done by different methods, which are not in the scope of
our work. The pulse signal is sampled to gain time discrete
measurements. The state changes represent the point process
and each state change is recorded with a sampling error and
the phase noise e(t). Both sources of error are considered as
one compound additive noise to the occurrence of the state
change time. A special analysis on sampling or quantization
error has been done in [11].

a (t ) P

t

y [n ]

δa(t )

y [4 ] y [5 ]y [3 ]y [2]y [1] y [4 ]

Φ

Fig. 1. Pulse and point process to show schematically a noise free pulse
process and in parallel a noisy sparse point process.

B. Point Process

The point process of state changes is represented by a
sequence

y[n] = nP + e[n] + φ (3)

of real numbers with period P ∈ ] 0,∞ [ and phase φ ∈ R
which has been derived from signals as (2) where the positive
edge was used for gathering the consecutive measurements
y[n], also see Fig. 1. As with any other observation process, er-
rors may occur and also the problem of missing state changes.
Those processes are called ”sparse point processes”. The
special behavior of sparse processes is modeled by randomly
recorded periodic events. As random source e.g. a geometric
or poisson probability process can be used as illustrated in
section III-A.

III. THE ESTIMATION

A. The frequency estimator

This algorithm is based on differences between events to
estimate fundamental frequency. Occurring events trigger the
sampler, which records t, as can be seen in Fig. 2 at the
upper sampling switch position. The time t is generated by a
local system clock with sufficient high resolution. The sampled
signal can be described similarly to a periodic point process,
but the simple multiplication of the period P by n ∈ N for
periodic events (3) is replaced by a multiplication with x[n]
as

y[n] = x[n]P + e[n] + φ (4)

where e[n] is an additive Gaussian measurement noise with
N (0, σe) and φ is a random phase. We define x[n] as stochas-
tic random variable with x[n] ∈ N and x[a] > x[b] if a > b.
Hence,

x[n+ 1] = x[n] + d[n] (5)

where d[n] are i.i.d. with mean µd and variance σ2
g . Alterna-

tively, x[n] can be written as x[n] =
∑n
i=1 d[i] and, therefore,

the sparse process is given by

y[n] = P
n∑
i=1

d[i] + e[n] + φ. (6)

To estimate the fundamental frequency fP = 1
P the differ-

ence between two events of the point process are used and
calculated as depicted in Fig. 2

yd[n] = y[n]− y[n−N ] = P
N−1∑
i=0

d[n− i] + ed[n] (7)

where ed[n] = e[n] − e[n −N ]. If a trigger event is missing
for t > y[n]+∆tmax an averaged period is used by y[n+1] =
y[n] +yd[n]/bµdNc to fill in the gap. ∆tmax is determined by
the smallest frequency of the search window ∆f as ∆tmax =

1
∆fmin

and µd is the mean of d[n]. The difference yd[n] is
calculated with bµdNc interpolated samples by the estimator
in Fig. 2. Thus, we rewrite (7) using P

∑N−1
i=0 d[n − i] =

P bNµdc as sum over all interpolated bµdNc samples

yd[n] = P
N−1∑
i=0

(
d[n− i] +

ed[n]

N

)
=

bµdNc−1∑
i=0

(
P +

eµd [n]

bµdNc

)
.

As commonly known, the interpolation does not change the
error variance of the original samples. Hence, the interpolated
error has to be eµd [n]=

√
µded[n] to fulfil µdσ

2
d

bµdNc=
σ2
d

N per non
interpolated sample for all µd. Consequently, if interpolated
samples are considered, eµd [n] has to be used. To proceed,
we introduce a vector notation as an intermediate step by

yNd [n] = {yd[n], . . . , yd[n−N + 1]} (8)

= {PdNd [n]+ed[n], . . . , PdNd [n−N+1]+ed[n−N+1]},

where dNd [n] =
∑N−1
i=0 d[n − i]. yNd [n] is the sum of two

vectors, the center vector cN [n] = {PdNd [n], . . . , PdNd [n −
N+1]} and the error vector of a multivariate Gaussian random
variable eNd [n] = {ed[n], . . . , ed[n−N + 1]}. This results in

yNd [n] = cN [n] + eNd [n]. (9)

Hence, yNd [n] represents a multivariate i.i.d. Gaussian random
variable with a diagonal covariance matrix, which is shifted
by the center vector cN [n]. All diagonal elements of the co-
variance matrix have the value σ2

d and it is therefore invariant
to a rotation in the N dimensional space. To emphasize, the
variance of in the N -dimensional diagonal vector has the same
variance as the variance in each of the N dimensions. Hence,
the center of the N -dimensional observation is given by cN [n]

with an additive error in direction of the vector cN [n]
|cN [n]| with

eNd [n] cN [n]
|cN [n]| = ed[n]. We write the vector components as

PdNd [n] = P
N−1∑
i=0

d[n− i] = P bNµdc. (10)

The length of the observed vector of the filled up sparse
process can be determined by using the absolute value of
yNd [n] as

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1151



+ yd
2 [n ] + + +

f̂ P[n]y [n]

⏞
N

- yd [n ]

v [n ]y d [n ]
⌊μdN ⌋

T

T T T T T

+

t
sample:

t> y [n ]+Δ tmax

⏞
⌊μd N ⌋

if event

⌊μdN ⌋√N
√v [n]

else if

Fig. 2. Iterative Frequency Estimator for f̂P (n) depicted using an unrolled iteration.

|yNd [n]| =
∣∣cN [n]

∣∣+ eNµd [n]
cN [n]

|cN [n]|

=

√√√√ N∑
k=1

(P bNµdc)2
+ eµd [n] (11)

= P bµdNc
√
N + eµd [n]. (12)

Finally, we write for the sparse process

v[n] =
N−1∑
i=0

y2
d[n− i] = |yNd [n]|2=

(
P bµdNc

√
N + eµd [n]

)2

(13)
and use the estimator structure of Fig. 2, to estimate fP of the
sparse process. With (13), the estimator equation is

f̂NP [n] =
bµdNc

√
N√

N−1∑
i=0

y2
d[n− i]

. (14)

The implementation can be done extremely efficiently when
using

v[n] =
N−1∑
i=0

y2
d[n− i] = v[n− 1]− y2

d[n−N ] + y2
d[n] (15)

for consecutive estimates. Therefore, the algorithm is called
iterative frequency estimator (IFE).

B. Properties and bounds of the iterative frequency estimator

Theorem 1. The estimator is unbiased for N → ∞ with
(f̂NP [n]− fP )→ 0 for a sparse point process.

Proof. ed[n] is a random variable of a stochastic i.i.d. process
with finite absolute value |ed[n]| < ∞. Therefore, the supre-
mum of the difference (f̂NP [n] − fP ) is with (14) and (13)
given by

lim sup
N→∞

(fP−f̂NP [n])=lim sup
N→∞

(
1

P
− bµdNc

√
N

P bµdNc
√
N+
√
µded [n]

)

= lim sup
N→∞

 1

P
− 1

P +
√
µdeµd [n]

bµdNc
√
N


= lim sup

N→∞

(
1

P
− 1

P +O(N−1.5)

)
→ 0 (16)

Theorem 2. The mean square error (MSE) of the frequency
estimator for sparse point processes is

E
[
(fP−f̂NP [n])2

]
u

σ2
d

bµdNcP 4N2
(17)

if
∣∣∣ √µded[n]

PbµdNc
√
N

∣∣∣ ≤ 0.1 for finite and infinite N .

Proof. The MSE of the estimator is given by

E
[
(fP−f̂NP [n])2

]
=E


1

P
− 1

P

1(
1 +

√
µded[n]

PbµdNc
√
N

)
2
 (18)

and thus

E
[
(fP−f̂NP [n])2

]
=E

 1

P 2

 √
µded[n]

PbµdNc
√
N(

1 +
√
µded[n]

PbµdNc
√
N

)
2
 . (19)

The approximation of f(x) = x2

(1+x)2 is done by applying
the Taylor polynomial x2 − 2x3 + R4(x) if x � 1 where
R4 is the Lagrange residual. When using random variables
and considering approximation error bounds, we have to use
additional information about the distribution. The distribution
of the random variable has to be truncated according to the
values of ed[n], which do not exceed the search window of
±0.5P . Hence, we can evaluate the Lagrange reminder by us-
ing the fourth derivative |f (4)(x)|=

∣∣∣ 72−48x
(1+x)6

∣∣∣≤M =150 under

the weak restriction of |x| =
∣∣∣ √µded[n]

PbµdNc
√
N

∣∣∣ ≤ 0.1. Finally, we

apply the approximation f̃(x) = x2 − 2x3 + 150x4 to (19)

E
[
(fP−f̂NP [n])2

]
≤E

[
1

P 2

(
µde

2
d[n]

bµdNc2P 2N
−

µd
√
µd2e

3
d[n]

bµdNc3P 3
√
N3

+ 150
µ2
de

4
d[n]

bµdNc4P 4N2

)]
. (20)

The third moment E[e3
d[n]] of ed[n] vanishes because the error

is zero mean (4) and thus

E
[
(fP−f̂NP [n])2

]
≤E

[
µde

2
d[n]

bµdNc2P 4N

]
+E

[
150µ2

de
4
d[n]

bµdNc4P 6N2

]
.

(21)
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The residual is a strict positive fourth order moment and with
M > 0, we find an upper and lower bound for (21) as

µdσ
2
d

bµdNc2P 4N
≤E
[
(fP−f̂NP [n])2

]
≤ µdσ

2
d

bµdNc2P 4N
+O(N−6)

where the residual vanishes at least with O(N−6) and is
therefore

σ2
d

bµdNcP 4N2
u E

[
(fP−f̂NP [n])2

]
. (22)

The result depends on ed[n] which is the sum of two
independent random variables e[n] and e[n−N ]. Hence we can
state that the variances have to be added. As we demonstrate
in simulations, the estimation performs according to (22) for a
wide range of parameters, but if σ2

ed
= 2σ2

e exceeds a certain
threshold, the estimation quality drops dramatically. As we
will see in section IV, the threshold is about P ≈ 5σed .
Hence all values of σ2

e >
P 2

100 will lead to increasing errors
based on wrong assignment of events to subsequent periods.
We conclude that this threshold represents a limit for pure time
domain frequency estimation.

In terms of MSE, our results are similar to that found for
the periodogram method [7] up to the threshold discussed
above, but with dramatically less complexity. In section IV
the method is discussed in more details.

C. The frequency estimator for non-sparse point processes

Here we consider the estimator based on sampling of the
observed non-sparse point process (3). According to (6), (7)
and (8), we derive similar to (12)

|yNd [n]| =
∣∣cN [n]

∣∣+ ed[n]
cN [n]

|cN [n]|

=

√√√√ N∑
i=1

N2P 2 + ed[n] = N
√
NP + ed[n] (23)

which gives an equation for the estimator by using (13)

f̂NP [n] =
N
√
N√

N−1∑
i=0

y2
d[n− i]

(24)

similar to (14), but with µd = 1, which is coherent because the
process is non-sparse. Between all consecutive samples is one
period, obviously the mean value has to be one. Consequently
Theorem 1 and Theorem 2 holds with µd = 1.
D. Computing complexity

As shown in the previous section we use the same type of
estimator for sparse and non-sparse processes. The value of
µd has to be adapted to the mean of the sparse process. If µd
is known or if we have a non-sparse process, the estimation
algorithm consists of N multiplications, N summations and
one square root operation. Therefore, the straightforward com-
plexity is O(N). If the algorithm is implemented iteratively,
the number of operations can be reduced to an initial O(N)
complexity and all consecutive estimates can be done by one

10−7 10−6 10−5 10−4 10−3 10−2 10−1

10−10

10−9

10−8

10−7

10−6

10−5

10−4
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10−1

100

σ2
e

M
SE

N=30 µd=1
IFE estimate
Error bound IFE
Error bound periodogram
Periodogram

Fig. 3. The MSE of frequency estimation for the time series estimate and as
baseline the periodogram estimate of a sparse process with µd = 1.
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Error bound IFE
Error bound periodogram
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Fig. 4. The MSE of frequency estimation for the time series estimate and as
baseline the periodogram estimate of a non-sparse process.

multiplication, two summations and one square root operation
O(4). According to Fig. 2, µdN is gained by a counter. The
counter accumulates the number of samples of both sample
switch positions. The counter is stopped when N real events,
which means only upper switch position, have occurred.

IV. SIMULATION RESULTS

Two algorithms to estimate the frequency of sparse pro-
cesses are used in the simulations. As baseline algorithm we
applied the periodogram, the most efficient and most accurate
method so far published [4]. The baseline algorithm was
implemented according to [4] with a chirp-z transform of
a quantized time series. The frequency estimate was found
by the maximum search proposed in [4]. The process data
were generated by using a geometrically distributed random
variable for the distances x[n] in equation (6). The additive
measurement noise e[n] is modeled as Gaussian according
to N (0, σe). With Monte Carlo simulation, 100 realizations
of the process were created as raw data to estimate the
frequency for statistical randomized experiments. To allow
reliable comparison, we used the same parameter set as it
was used in [4]. The period of the generated sparse process is
given by P = π

3 and the initial phase is φ = 0.2. Two different
mean values of the geometric distribution were used, µd = 1
and µd = 10. Additionally we analyzed the computation
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Fig. 5. The MSE of frequency estimation for the time series estimate and as
baseline the periodogram estimate of a non-sparse process.

complexity for the baseline algorithm. We considered the most
accurate estimation in our work with N = 1200 and a quan-
tization as recommended by [4], [11] of q = 7.5. Thus, the
complexity is of O(qN log(qN)) ≈ 1.2 ·105 for one estimate.
This number does not include maximum search which can
add O(10N) on top of it. In contrast to that, our algorithm
would take O(N) = 1.2 ·103 operations, which are two orders
of magnitude less at comparable performance. In Figures 3
to 6 the MSE is depicted as function of additive Gaussian
measurement noise. We consider Fig. 3 and Fig. 4 to compare
sparse and non-sparse processes. The MSE is depicted and
it can be clearly seen that there is no significant difference
and the algorithm performs on both processes in the same
way. In both figures the baseline algorithm is also depicted.
The baseline algorithm is also used in Fig. 5 to compare both
algorithms for a high number of samples N = 1200 and a
sparse process with a mean of µd = 10, which shows similar
MSE for both algorithms below the threshold of 5σ2

d. If the IFE
uses all bµdNc, observed and interpolated samples, the MSE
of periodogram and IFE algorithm are equivalent even for high
µd. The threshold and its dependency can be seen in Fig. 6
for two different frequencies. It is evident that the threshold is
frequency dependent, roughly by σ2

e >
P 2

100 . An detailed study
on the threshold has to be done in further research.

V. CONCLUSION

We present a fundamental frequency estimator for sparse
and non-sparse point processes. The principle relies on a
low complex averaging algorithm of squared differences. The
simulations show the same MSE as the theoretically derived
lower bound which is proportional to O(N−3). If we compare
our algorithm with a baseline periodogram algorithm, we
see that the estimation error is at a similar absolute value
but with dramatically less complexity of O(N) as compared
to O(N log(N)). Furthermore, the algorithm avoids block
processing as necessary for the chirp-z transform. This allows
us to use it in low power sensor nodes prepared for harsh
environments where it is likely to miss clock synchronization
pulses. The algorithm can be implemented iteratively to save
most of the computing time in subsequent estimates. There are
already existing implementations in the area of energy harvest-

10−3 10−2 10−1
10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

σ2
e

M
SE

N=1200 µd=10
Error bound IFE
IFE P=0.7
IFE P=3

Fig. 6. A detailed view on the estimation of two processes with different
fundamental frequencies under bad noise conditions.

ing wireless sensor nodes [2], [3], which benefit from the high
estimation accuracy and less computational complexity.
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