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Abstract—We present a novel online learning paradigm for
nonlinear function estimation based on iterative orthogonal
projections in an L

2 space reflecting the stochastic property of
input signals. An online algorithm is built upon the fact that any
finite dimensional subspace has a reproducing kernel, which is
given in terms of the Gram matrix of its basis. The basis used
in the present study involves multiple Gaussian kernels. The
sequence generated by the algorithm is expected to approach
towards the best approximation, in the L

2-norm sense, of the
nonlinear function to be estimated. This is in sharp contrast to the
conventional kernel adaptive filtering paradigm because the best
approximation in the reproducing kernel Hilbert space generally
differs from the minimum mean squared error estimator over
the subspace (Yukawa and Müller 2016). Numerical examples
show the efficacy of the proposed approach.

I. INTRODUCTION

Given a basis containing Gaussian functions with different

scale parameters, what space possesses the most preferable

geometry for online nonlinear-function estimation? This ques-

tion naturally arises through our recent studies of multikernel

adaptive filtering [1]–[4]. Kernel adaptive filtering [5]–[18]

is an adaptive counterpart of the kernel method [19], [20].

It is known that an appropriate design of the metric leads

to significant improvements of convergence behaviors for

the projection-based adaptive algorithms [21], [22]. For both

the monokernel and multikernel approaches, projection-based

adaptive algorithms have been studied under the metrics of

the Euclidean space and the reproducing kernel Hilbert space

(RKHS). It has experimentally observed that the Hilbertian

metric enjoys better convergence behaviors than the Euclidean

one due to its decorrelation property [3], [16], [17]. It has

recently been shown in single-kernel arguments that the eigen-

value spread for the case of the Euclidean metric is reduced

to its square root, by the use of the Hilbertian metric, under

a certain practical condition [23]. The speed of convergence

is actually of particular importance when multiple kernels are

employed or when the data under study has a large scale. The

question is what is the best metric in the sense of decorrelation

(or whitening). This is clearly related to the classical algorithm

of the recursive least squares (RLS). An answer is the metric

of the real Hilbert space H := L2(RL, dµ) equipped with the

inner product

〈f, g〉H :=

∫

RL

f(u)g(u)dµ(u), f, g ∈ H, (1)

and its induced norm ‖f‖H :=
√

〈f, f〉H, where L ∈ N
∗ is

the dimension of inputs and dµ(u) := p(u)du is the proba-

bility measure for the probability density function p(u) of the

input vector u ∈ R
L. Throughout, R, N, and N

∗ are the sets

of real numbers, nonnegative integers, and positive integers,

respectively. The space H unfortunately has no reproducing

kernel, although reproducing kernels play an important role in

building efficient online nonlinear-estimation algorithms.

In this paper, we present an efficient online algorithm op-

erating iterative orthogonal projections in H based on the fact

that every finite dimensional space has a reproducing kernel.

We show how the reproducing kernel can be constructed from

a set of basis vectors. The Gram matrix of the basis comes in

here, and it is required for evaluating the kernel. Fortunately,

in some practical cases, the Gram matrix can be expressed in

a closed form (see Section II-B). It is therefore unnecessary

to estimate it recursively unlike the kernel RLS (KRLS)

algorithm [7]. The proposed online learning paradigm has the

following remarkable property: what the algorithm seeks for

(i.e., the minimum mean squared error (MMSE) estimator)

coincides with the best approximation of the desired nonlinear

function in the dictionary subspace. The computational com-

plexity of the proposed algorithm has the same order as that of

the Euclidean approach when the selective update strategy [16]

is employed. The numerical examples show that the proposed

algorithm enjoys an improved decorrelation property, which

leads to faster convergence.

II. ONLINE LEARNING IN L2 SPACE

We consider the following nonlinear system model:

dn := zn + νn = ψ(un) + νn, (2)

where un and dn are the input and the output, respectively,

ψ ∈ H is the nonlinear function to be estimated, and νn is the

noise at time n ∈ N. Note here that the space H is known to be

a superset of a Gaussian RKHS [24], and hence ψ ∈ H is not

a stronger assumption than assumed usually in the literature

of kernel adaptive filtering. The metric projection of a given

vector f ∈ H onto a given closed convex set C ⊂ H is defined

as

PC(f) := argmin
g∈C

‖f − g‖H . (3)

If the set C is affine, PC is referred to as the orthogonal

projection.

A. Algorithm

A multikernel adaptive filter at time n is given by [1], [3]

ϕn(u) :=
∑

q∈Q

∑

j∈J (q)
n

h
(q)
j,nκq(uj ,u), h

(q)
j,n ∈ R, (4)
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where Q := {1, ..., Q} is the set of kernel indices and

J (q)
n , q ∈ Q, is the set of data indices for the qth kernel.

The set Dn :=
⋃

q∈Q {κq(uj , ·)}j∈J (q)
n

is called a dictionary,

and the dictionary subspace is defined as

Mn := spanDn ⊂ H. (5)

For the initial estimate ϕ0 := θ, where θ is the null vector of

H, generate the sequence (ϕn)n∈N of nonlinear estimators by

using a natural extension of [16] to H:

ϕn+1 := ϕn + λ (PΠn
(ϕn)− ϕn)

= ϕn + λ
dn − ϕn(un)

‖κ (un, ·)‖2H
κ (un, ·) , (6)

where λ ∈ (0, 2) is the step size, Πn := {f ∈ Mn | f(un)
= 〈f, κ(un, ·)〉H = dn} is the zero instantaneous-error

hyperplane, and κ (·, ·) is the reproducing kernel of the Hilbert

space (Mn, 〈·, ·〉H), given by the following proposition.

Proposition 1. Let D := {f1, f2, ..., fr} ⊂ H, r ∈ N
∗,

be a linearly independent set, and R is its Gram matrix

with its (k, l) entry Rk,l := 〈fk, fl〉H. Define f(x) :=

[f1(x), f2(x), · · · , fr(x)]T, x ∈ R
L, where (·)T is the trans-

pose of the vector. Then,

κ (x,y) := f(x)TR−1f(y), x,y ∈ R
L, (7)

is the reproducing kernel of the subspace M := spanD.

Proof. It is clear that κ (x, ·) ∈ M for any x ∈ R
L. By

definition of 〈·, ·〉H, it can be readily verified that

〈κ (x, ·) , κ (y, ·)〉H
=

∫

RL

f(x)TR−1f(u)︸ ︷︷ ︸
κ(x,u)

f(u)TR−1f(y)︸ ︷︷ ︸
κ(y,u)

dµ(u)

= f(x)TR−1

∫

RL

f(u)f(u)Tdµ(u)

︸ ︷︷ ︸
R

R−1f(y)

= κ (x,y) . (8)

For any x ∈ R
L and φ :=

∑r

i=1 αifi, αi ∈ R, the reproducing

property holds:

〈φ, κ (x, ·)〉H =

∫

RL

φ(u)f(u)TR−1f(x)dµ(u)

=

r∑

i=1

αi

∫

RL

fi(u)f(u)
TR−1f(x)dµ(u)

=
r∑

i=1

αi e
T

i f(x)︸ ︷︷ ︸
fi(x)

= φ(x), (9)

where {ei}ri=1 is the standard basis of Rr.

To attain linear complexity (see Section II-D3), we em-

ploy the selective update strategy. The idea is to select a

few, say sn ∈ N
∗, elements from Dn that are maximally

coherent to κ (un, ·) ∈ Mn [16]; i.e., select D̃n(⊂ Dn)

with

∣∣∣D̃n

∣∣∣ = sn such that f(un)/{‖f‖H ‖κ (un, ·)‖H} ≥

g(un)/{‖g‖H ‖κ (un, ·)‖H} for any f ∈ D̃n and for any

g ∈ Dn \ D̃n.

B. Computation of inner product

We present two practical examples for which (approximate)

analytical expressions of inner product can be obtained and for

which the computational advantage of kernel adaptive filters

preserves.

Example 1 (Gaussian kernels and uniform distribution).

Suppose that no information is available on the statistical

property of the input vector. In this case, one may use the

concept of noninformative prior [25], i.e. let dµ(u) = du
and H̃ := L2(RL, du). This approach works efficiently in

practice, as will be shown by simulations in Section III. Let

κq(u,x) :=
1

(
√
2πσq)L

exp

(
−‖u−x‖2

RL

2σ2
q

)
, q ∈ Q, u,x ∈ R

L,

σq > 0. Then, for any k, l ∈ Q and for any u,x ∈ R
L,

〈κk(u, ·), κl(x, ·)〉H̃ =
1

(
√
2πσk,l)L

exp

(
−‖u− x‖2

RL

2σ2
k,l

)
,

(10)

where ‖x‖
RL :=

√
xTx, x ∈ R

L, and σk,l :=
√
σ2
k + σ2

l . We

mention that the result in (10) is also obtained in the RKHS

of a Gaussian kernel by taking the limit of its scale parameter

towards zero (see also [26]).

Example 2 (Gaussian kernels and Gaussian distribution).

Suppose that the input vector obeys the zero-mean Gaussian

distribution with standard deviation σ > 0. In this case, using

the Gaussian kernels as in Example 1, the inner product can

be computed exactly by

〈κk(u, ·), κl(x, ·)〉H =
1

(2πσσk,l)L

exp

(
−σ

2 ‖u− x‖2
RL + σ2

l ‖u‖
2
RL + σ2

k ‖x‖
2
RL

2σ2σ2
k,l

)
. (11)

C. A remarkable property of L2-space online learning

The online learning paradigm in the L2 space H has a

remarkable property coming directly from the following basic

fact.

Fact 1. Assume that E [f(un)νn] = 0. The MMSE estimator

ψ∗
M := argminf∈ME[dn− f(un)]

2 then coincides with the

orthogonal projection PM(ψ), which is the best approximation

of ψ in M in the L2-norm sense.

Figure 1(a) illustrates the proposed learning paradigm. This

is in sharp contrast to the conventional picture of the kernel

adaptive filtering paradigm depicted in Figure 1(b). Note here

that the best approximation of ψ in the RKHS generally differs

from the MMSE estimator ψ∗
M [23].

D. Discussion

1) Decorrelation property: The convergence behavior of

the proposed algorithm is governed by the autocorrelation
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H := L2(RL, dµ)

M

ψ

θ PM(ψ) = ψ∗
M

(a) Proposed online learning paradigm

M

ψ

θ

ψ∗
M

H := RKHS

(b) Conventional kernel adaptive filtering paradigm

Fig. 1. An illustrative comparison between the proposed paradigm and the
conventional kernel adaptive filtering paradigm.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS

NLMS 3L+ 2
KNLMS (L+ 6)rn + 2

HYPASS (L+ 4)rn + L+5

2
s2n −

L−1

2
sn + 2 + vinv(sn)

MXKLMS (L+ 3)rn + 5Q+ 10
OMKR (L+ 3Q)rn + 4Q

MKNLMS (L+ 6)rn + 2

CHYPASS (L+ 5)rn + L+5

2
s2n −

L−1

2
sn + 2 + vinv(sn)

Proposed (L+ 5)rn + L+5

2
s2n −

L−1

2
sn + 2 + vinv(sn)

matrix R̃ := R̂
− 1

2
RR̂

− 1
2 ≈ I of the modified kernelized

input vector k̃ := R̂
− 1

2
k, where R̂ is an approximation of

R (see [17]). In practice, the exact autocorrelation matrix is

unavailable as the exact distribution of the input is unknown.

The eigenvalue spread of R̃ is therefore greater than one

usually.

2) Relation to kernel adaptive filter: The major advantages

of kernel adaptive filtering include the tractability of inner

product (which enables to obtain the update direction easily)

and the invariance of metric when the dictionary grows. The

proposed paradigm satisfies both of the advantages because a

reproducing kernel can always be defined depending on the

dictionary. Besides, the scale parameters of basis functions

can be chosen arbitrarily and (possibly inappropriate) nonin-

formative distribution of the input vector efficiently works in

many cases (see Section III), although the inner product can

be expressed in a closed-form only in some limited cases.

We emphasize that our approach does not prevent us from

using kernels other than Gaussian, for example, when multiple

Gaussian kernels and non-Gaussian kernel are employed, the

Cartesian product of L2 space for Gaussian kernels and the

RKHS of the other kernel can be exploited instead of the

Cartesian products of the RKHSs.
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Fig. 2. Computational complexity for L = 2, sn = 7, Q = 3.

3) Computational complexity: We discuss the computa-

tional complexity in terms of the number of multiplications

required at each iteration. Suppose that the normalized Gaus-

sian kernels as in Example 1 are used. We employ the selective

update strategy [16] and sn is the number of selected elements.

Table I summarizes the overall per-iteration complexity of

the proposed algorithm (the case of Example 1), normalized

least mean squares (NLMS) [27], kernel NLMS (KNLMS)

[12], hyperplane projection along affine subspace (HYPASS)

[16], deterministic online multiple kernel regression (OMKR)

(Hedge) [28], mixture kernel least mean square (MXKLMS)

[29], multikernel NLMS (MKNLMS) [1], and Cartesian HY-

PASS (CHYPASS) [3]. In Table I, the complexity required for

the inverse of an sn×sn matrix is denoted as vinv(sn). Figure

2 shows the evolution of the computational complexity of the

algorithms for L = 2, sn = 7, n ∈ N, and Q = 3, where we

let vinv(sn) := s3n.

4) Dictionary design and novelty criteria: Suppose that the

Gaussian kernels are employed with σ1 > σ2 > · · · > σQ > 0.

In this case, one possible dictionary design is the following.

1) κ1(un, ·) is added into the dictionary when a novelty

criterion is satisfied for κ1(un, ·).
2) κi(un, ·), i ≥ 2, is added into the dictionary if the nov-

elty criterion is satisfied for κi(un, ·) but is unsatisfied

for all κ1(un, ·), κ2(un, ·), · · · , κi−1(un, ·).
In the experiments, the coherence criterion [12] is employed

for all algorithms because of its low computational complexity.

We show however that the proposed algorithm takes some

benefits from the approximate linear dependency (ALD) cri-

terion, although an experimental study for the ALD criterion

is beyond the scope of this paper. Let M+ := spanD+ be

the dictionary subspace of D+ := D∪{fr+1}. Given a vector

f ∈ H and a dictionary subspace M, we consider the ALD

condition
‖f − PM(f)‖2H

‖f‖2H
≥ η (12)

where η ∈ [0, 1] controls the sparsity level of the dictionary.

Then, the following proposition holds.

Proposition 2. Given fr+1 ∈ H, let M+ := span (D ∪ fr+1)
and ψ∗

M+
:=
∑r+1

i=1 hifi, hi ∈ R be the MMSE estimate
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Fig. 3. Illustrations of the autocorrelation matrices of the modified kernelized
input vectors.

in M+. Assume E [fi(un)νn] = 0, i ∈ {1, ..., r + 1}, and

E [ψ(un)νn] = 0. If the ALD condition (12) is satisfied for

the vector f := fr+1, it holds that

∆MMSE := MMSE(M)−MMSE(M+) ≥ h2r+1 ‖fr+1‖2H η,
(13)

where MMSE(M) := minf∈ME [dn − f(un)]
2

for a closed

subspace M ⊂ H.

Proof. By the assumptions and the definition of ‖·‖H, we have

MMSE(M)

= E [dn − ψ∗
M(un)]

2
= E [ψ(un)− ψ∗

M(un)]
2
+ E(νn)

2

= ‖ψ − ψ∗
M‖2H + E(νn)

2 (14)

MMSE(M+)

= E
[
dn − ψ∗

M+
(un)

]2
=
∥∥∥ψ − ψ∗

M+

∥∥∥
2

H
+ E(ν2n). (15)

By Pythagorean theorem, it follows that

∆MMSE

= ‖ψ − ψ∗
M‖2H −

∥∥∥ψ − ψ∗
M+

∥∥∥
2

H
=
∥∥∥ψ∗

M+
− ψ∗

M

∥∥∥
2

H
= h2r+1 ‖fr+1 − PM(fr+1)‖2H ≥ h2r+1 ‖fr+1‖2H η. (16)

By Proposition 2, the ALD condition ensures that

the amount of MMSE reduction is no smaller than

h2r+1 ‖fr+1‖2H η.

5) Convergence analysis: Since the proposed paradigm

employs the Hilbert space L2(RL, dµ) for learning, the con-

vergence analysis in [16, Section III.C] can be applied straight-

forwardly to the present case.

III. NUMERICAL EXAMPLES

We first show the decorrelation property of the proposed al-

gorithm. We then show the efficacy of the proposed algorithm

in online prediction of time-series data.

A. Decorrelation property

We compare the eigenvalue spreads of the modified au-

tocorrelation matrices of the proposed algorithm and the

existing multikernel adaptive filtering algorithms. Dictionary is

constructed by using the coherence criterion with the threshold

η = 0.8 beforehand and is fixed during the experiment.

We employ Gaussian kernels with scale parameters σ =

TABLE II
EIGENVALUE SPREADS OF R̃S.

MKNLMS CHYPASS Proposed

1.39× 1017 2.04× 1015 3.70× 1013

1.0, 0.5, 0.05, and test 10000 samples drawn from the input

space R, i.e. L = 1 with the uniform distribution over [−1, 1],
and the eigenvalue spreads of the autocorrelation matrices

R̃s are averaged over 300 independent trials. Table II shows

the eigenvalue spread of R̃ for each algorithm. According to

Table II, the proposed algorithm has a better decorrelation

property. We emphasize here that proposed approach works

well despite the use of (possibly inappropriate) noninformative

distribution for the input vector. For further clarification, R̃s

for MKNLMS, CHYPASS, and the proposed algorithm are

illustrated in Figure 3. In particular, we can observe that the

off-diagonal elements of R̃ are closer to zero compared to the

other algorithms.

B. Online prediction of time-series data

We consider the time series data generated by the following

equation [12]: dn := (0.8 − 0.5 exp (−d2n−1))dn−1 − (0.3 +
0.9 exp (−d2n−1))dn−2 + 0.1 sin (dn−1π) for 0 ≤ n ≤ 6000
(d−2 := d−1 := 0.1) The noise is white Gaussian with the sig-

nal to noise ratio (SNR) 40 dB. In this experiment, each datum

dn is regarded as a nonlinear function of un := [dn−1, dn−2]
T,

i.e. L = 2. In this example, the distribution of the input

vector is neither uniform nor Gaussian. Nevertheless, we shall

assume noninformative distribution for the input vector to

show that the assumption works well even in such a case.

We compare the proposed algorithm with NLMS, KNLMS,

HYPASS, OMKR, MXKLMS, MKNLMS, and CHYPASS.

The proposed algorithm, MKNLMS, and CHYPASS employ

the selective update strategy with sn := 7. We employ three

Gaussian kernels with σ1 = 1.5, σ2 = 0.9, σ3 = 0.3, and

for the single-kernel ones, we only employ a Gaussian kernel

with scale parameter 0.3661 by following the recommenda-

tion in [12]. The maximal dictionary size for OMKR and

MXKLMS is set to M = 100, and the coherence threshold

for the proposed algorithm, KNLMS, HYPASS, MKNLMS,

and CHYPASS are selected so that the dictionary sizes at

the end of each trial are the same. Figure 4(a) shows the

MSE learning curves and Figure 4(b) shows the evolutions

of the dictionary size. The proposed algorithm outperforms

the compared algorithms. Note that OMKR and MXKLMS

compute the coefficients of atoms in the dictionary only once,

and this causes a severe degradation of the performance when

the maximal dictionary size is limited.

IV. CONCLUSION

The L2(RL, dµ) space possesses the most preferable ge-

ometry (in the sense of decorrelation) for online nonlinear-

function estimation for a given set of Gaussian functions with

different scale parameters. We proposed the online learning

algorithm with multiple Gaussian kernels based on the iterative
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Fig. 4. Results of online prediction.

orthogonal projection operated in L2(RL, dµ). Although the

L2 space has no reproducing kernel, its finite dimensional

subspace has a reproducing kernel. The update equation of

the proposed algorithm therefore resembles a kernel adaptive

filtering algorithm. The proposed L2 space online learning

paradigm has a remarkable property that the MMSE estimator

(which online algorithms seek for) coincides with the best

approximation of the unknown system within the dictionary

subspace. The efficacy of the proposed algorithm was shown

by simulations.
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