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Abstract—This paper presents a new algorithm for discon-
tinuity location and characterization using A-scan signals from
an ultrasonic inspection system. The algorithm is based on
solving an inverse problem in which the observation model is
different from that traditionally used. In this model, the input
vector represents the location of the geometrical center of the
discontinuity and the scattering amplitude of the discontinuity
is embedded in the impulse response of the ultrasonic inspection
system. First, we jointly estimate the locations and the scattering
amplitudes of the discontinuities from the acquired signals. Then,
the geometrical parameters of the discontinuities are calculated
from the estimated scattering amplitude. The method is tested
to characterize side-drilled holes using both synthetic and real
data. The results demonstrates the effectiveness of the algorithm.

I. INTRODUCTION

Discontinuity characterization in solid objects by ultrasonic
nondestructive evaluation (NDE) comprises finding unknown
parameters such as flaw type, size, orientation and location.
Such evaluation is of central importance to assure the structural
integrity in materials and components of the mechanical struc-
tures [1]. The presence of discontinuities in these structures
may or may not be acceptable depending on whether they
degrade or not the performance or durability of the structure
[2].

The discontinuity characterization from A-scan signals col-
lected by an ultrasonic inspection system (UIS) has already
developed using several approaches. In general, these approa-
ches use A-scan signals collected by UIS with: (I) a monostatic
transducer in pulse-echo configuration using Synthetic Aper-
ture Focusing Technique (SAFT) [1], [3]; (I) two transducers
using Time of Flight Diffraction (TOFD) technique [4]; (III)
an array of transducers using Total Focusing Method (TFM)
or Full Matrix Capture (FMC) [5].

In [6], SAFT is used to collect A-scan signals and the size
of side-drilled holes (SDH) is determined by evaluating the
traveling distance of the reflected signal. In [3], a comparative
study of the SAFT and TOFD techniques is presented to sizing
several refletors. The use of ultrassonic arrays to characterize
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Figure 1. A linear scan to carry out an ultrasonic NDE on an object with a
discontinuity. The transducer is placed through a set of L different positions
along a direction from w1 to wr,. The spatial sampling period must be constant.
An A-scan signal is acquired at each position.

flaws is presented in several papers. In [7], the measurement
of the scattering coefficient matrix is used to obtain the
size, shape and orientation of a crack-like defect. In [8], the
correlation coefficient and the structural similarity of scattering
matrices are used for defect characterization.

In this paper, we present a novel algorithm to estimate
both the location and the parameters of the discontinuities
in solid objects based on solving an inverse problem. Dif-
ferently from traditional approaches where the input of the
model represents the internal acoustic reflexivity [9]-[11],
our observation model uses the location of the geometrical
center of the discontinuity as input. In addition, the scattering
amplitude of the discontinuity is embedded in the impulse
response of the system. Thus, the proposed algorithm is able to
estimate from the measured A-scan signals the location of the
geometrical center of the discontinuity and also its parameters
simultaneously.
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Table I
SCATTERING AMPLITUDE EXPRESSIONS IN KIRCHHOFF APPROXIMATION
FOR SOME DISCONTINUITIES

Discontinuity Scattering amplitude S4 (w, ®)
b in (kb
— 5 exp (—ikb) | exp (~ikd) ~ Smk(b )
Spherical
void

O = (b),
where b is the radius of sphere

kbD ikbD
=5 191 (2kb) — 81 (2kD)] + ik
s

Side-drilled

hole (SDH) © = (b, D),
where b is the radius of SDH
and D is its length
ikb? cos o jinc (2kbsin o)

Circular flat ® = (ba),

crack where b is the radius of crack

and « is the angle between incident wave
and the unit normal to the crack

Infinitesimal 1

point

II. OBSERVATION MODEL

An UIS can be modeled as a linear time invariant (LTT) sy-
stem [12]. This system has a frequency response composed by
a concatenation of several LTI systems, each one representing
a part of the UIS. Conveniently, only the scattering amplitude
depends directly on the physical and geometrical properties of
a discontinuity [12]. The scattering amplitude is referred to as
Sa(w,®) in this paper, where w is the angular frequency and
©® is a vector containing the discontinuities parameters. The
expressions for S4(w, ®) depend on the type of discontinuity.
They can be defined as parametric expressions in which the
parameters are related to the dimensions and orientation of
the discontinuity [12]. Table I shows the scattering amplitude
expressions in the Kirchhoff approximation for some discon-
tinuities [13].

Suppose we have a metallic object with only one discon-
tinuity. This condition is easily obtained in practical situations.
The inspector can define a Region of Interest (ROI) in the
object and select a sampling window to characterize only one
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discontinuity. An UIS with a circular piston transducer of
radius a carries out a linear scan to collect L A-scan signals
with N samples each (Fig. 1). This A-scan signals can be
modeled in the frequency domain by Eq. (1) [11]:

V,(ti,w) = (—2a%ik)H?(w)Sa(w, ©)

X / jinc? [ka sin ¢g.g,] exp (i12k|F — d;|) f(F)dr,

FEROI
(D
where U is the central point of the active surface of transducer
during linear scanning; k = w/c is the spatial frequency

or wavenumber (c is the sound speed of longitudinal waves
into propagation medium); H(w) is the combined frequency
response of all electrical circuits, plus electrical-mechanical
conversion in transducer; Ty is the position of the geometrical
center of the discontinuity; ¢z,;g, is the angle between normal
axis of transducer surface and the vector ¥ — Uy; jinc(z) =
Ji(z)/xz, J1() is a first order Bessel function [12].
The function f(F) is defined by:

. 1, forr=ry
f(@) = o @
0, for all other points in the ROI

which represents the position of geometrical center of the
discontinuity modeled by S4(w,®). The domain of f(r)
are all points in ROI. This is a novel approach to flaw
characterization and location.

Eq. (2) defines f(F) as a sparse function. Therefore, the
model represented by Eq. (1) is similar to the model present
in [11, Eq. 7]. Thus, following the same procedures of [11],
it is possible to represent Eq. (1) (in the time and the space
domains and assuming a 2D ROI) in matrix format:

v=FB4(@)STFf +n, 3)
N———
H(©®)

where v e f are, respectively, the samples of A-scan sig-
nals and the discrete representation of f(F), both stacked
as column vectors; F is the 2D Discrete Fourier Trans-
form (DFT) matrix; St is the Stolt modeling matrix [11];
B.(©) = diag [(—2a%k)H?(w) jinc® (kya/2)Sa(w, ©)] in-
cludes the combined frequency response of all electrical
circuits, the diffraction effect of circular transducer and the
scattering amplitude expression of the discontinuity; and 7 is
the vector representing the uncertainties in the measurements
during data acquisition process by UIS.

III. DISCONTINUITY CHARACTERIZATION PROBLEM

The recast of Eq. (1) into Eq. (3) indicates that the dis-
continuity characterization problem can be treated as a blind
deconvolution problem [14]. The discontinuity location (vector
f) and its parameters (embedded in H(®) model) should be
estimated from A-scan signals measured by UIS. In a blind
deconvolution problem, both the input and the model may be
partially or totally unknown. Therefore, some kind of prior
information about the input and/or the model, such as physical
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characteristics or statistical information, is necessary to solve
the problem [14].

Although the vector f is generally unknown in a practical
discontinuity characterization problem, it can be safely mo-
deled as a sparse vector as one expects to find few discon-
tinuities in a specimen.

A. Algorithm description

As already state, an algorithm to solve this problem should
be able to find both the discontinuity location in ROI and the
parameters ® of scattering amplitude expression embedded
in model H(®). Using Eq. (3) and a penalized optimization
approach [15], the proposed algorithm is defined as:

{f, @} = arg I}llél Q(f; ©) where (4a)
Q(f;©) = [[v — H(O)E|5 + AJf]|:. (4b)

The cost function (4) has two terms. The first ensures
fidelity of the solution with measured data. It corresponds
to the Nonlinear Least Squares method [16] because the
expressions of the scattering amplitudes for different types
of discontinuities are nonlinear with respect to ® [12]. The
second is a regularization term that promotes the sparsity of f
[15], [17]. The regularization parameter A controls the trade-
off between the two terms [18].

There is a difficulty to solve Eq. (4a) because we need
to estimate two distinct variables, f and ©. A widely used
approach to solve this kind of problem is the Alternating
Minimization (AM) [17]. In this method, we solve the problem
with respect to one unknown while holding the other unknown
constant. There are some well-known shortcomings applying
AM in the discontinuity characterization problem: (I) we need
a strategy to choose initial values of @; (II) the algorithm must
reconstruct f at each iteration and this can be computationally
expensive; (III) we need define a stopping criteria which
terminates the algorithm when f and © approximations are
sufficiently high quality [19]. The proposed algorithm, referred
to as Ultrasonic Discontinuity Characterization (UTDisC), is
based on the AM method. The pseudocode of UTDisC is
shown in Fig. 2.

Let 7 be the domain of ©, including all possible va-
lues within acceptable limits. We select a finite subset
{©1,0,, -+ ,0Ok}. For each ©; in this subset, we evaluate
H(©,). Given H = H(®,), we can find f using any algorithm
for sparse image reconstruction such as UTSR [11]. However,
we chose the backprojection algorithm, defined in Eq. (5), to
decrease computational cost.

fBP = HTV (5)

Although f'Bp is blurrier than f calculated by UTSR al-
gorithm, it can be used to estimate ©. The rationale is that
the higher amplitude point in f5p indicates the discontinuity
central location in ROI with a sufficient precision. We do not
need define a stopping criteria because there are not iterations.
Finally, we estimate a better approximation of f using the

UTSR algorithm and H(©).
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1: procedure UTDISC(v, A, 7)
2 for ®; € T do

3: H <« F'B4(©,)S'F
4: pr — I:ITV

5 e; = Q(fpp; ©;)

6 end for

7 j =argmine;

8: é — @j
o.  f+ UTSR (v, H(é)))
10: end procedure

Figure 2. Pseudocode of the proposed algorithm to solve the discontinuity
characterization problem based on Nonlinear Least Squares with sparse
restriction.

IV. RESULTS
A. Simulations

Initially, we test the UTDisC algorithm using synthetic data
generated by Eq. (1). We add white Gaussian noise with SNR
of 20 dB to the synthetic A-scan signals. We consider only
SDH discontinuities. The expression for scattering amplitude
of the side-drilled hole in the Kirchhoff approximation is [13,
Eq. 10.53]

kbD

Sa(w.b, D) = =5 [J1 (2kb) — Sy (2kb)] + koD

™

(6)

where D is the length of SDH; b is the radius of SDH; k is the
wavenumber; J; (+) is a Bessel function of order one and Sy ()
is a Struve function of order one. As S4(w,b, D) is directly
proportional to D, it is possible to treat D as an attenuating
term that is offset by the UIS. Therefore, we consider the
Sa(w,b, D) expression normalized by D and b is the only
parameter in the vector ®. We generate synthetic data for
SDHs of diameters 1 mm, 5 mm and 10 mm in steel blocks
with ¢ = 5860 m/s. The searching grid for diameter of the
SDHs is 0.1 mm to 15 mm with steps of 0.1 mm. The value
of X is set to 1x107%.

The results of applying the UTDisC algorithm to synthetic
data are shown in Fig. 3. In Fig. 3a, the ordinate represents
the numerical value of Eq. (4b) and the abscissa is the diame-
ter of discontinuities (parameter ®). Highlights indicate the
minimum of Eq. (4b) for each SDH. These points correspond
to the estimated diameter of the SDHs. The algorithm found
the correct values of the diameters for all tested SDHs from
synthetic data. The Fig. 3b shows the reconstructed image by
UTSR algorithm for the SDH of diameter 1 mm. The UTDisC
algorithm has located the geometrical center of the SDH at
z = 15 mm and z = 40.02 mm.

B. Experimental results

The experimental validation of the UTDisC algorithm was
carried out with A-scan signals collected by an UIS inspecting
three different specimens. Each specimen is a steel block
containing a SDH of diameter 1 mm, 5 mm and 10 mm. All
SDHs are located at x = 15 mm and z = 40 mm. The grid
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Figure 3. Simulation results for the UTDisC algorithm. (a) Graphs showing the results of applying the UTDisC algorithm to synthetic data for SDHs of
diameter 1 mm, 5 mm and 10 mm. Highlights indicate the minimum of Eq. (4b) for each SDH. (b) The reconstructed image by UTSR algorithm for a
simulated SDH of diameter 1 mm with geometrical center at x = 15 mm and z = 40 mm. The geometrical center of the SDH was located exactly.

EXPERIMENTAL DATA COLLECTED FROM THREE DIFFERENT SPECIMENS

Table 11
RESULTS GIVEN BY APPLYING THE UTDISC ALGORITHM TO THE

AND VARYING THE REGULARIZATION PARAMETER A. EACH CELL
PRESENTS THE ESTIMATED DIAMETER OF THE SDHS.

A Specimen
(x1073) | SDH1 mm | SDH 5 mm | SDH 10 mm
0 1.1 mm 5.5 mm 11.3 mm
0.1 1.1 mm 5.5 mm 11.3 mm
0.2 1.1 mm 5.5 mm 11.3 mm
0.5 1.1 mm 5.5 mm 10.7 mm
1 1.0 mm 5.5 mm 10.7 mm
2 1.0 mm 4.8 mm 10.7 mm
5 0.6 mm 4.1 mm 9.3 mm
10 0.5 mm 2.8 mm 7.3 mm
20 0.2 mm 1.5 mm 3.2 mm
50 0.1 mm 0.1 mm 0.1 mm

search was the same for the test with synthetic data. As A is
related to the SNR of the A-scan signals acquired by UIS and
we do not know it a priori, we repeat the test using different
values for A. The results are shown in Table II. Each cell
presents the estimated diameter of the SDHs.

The UTDisC algorithm presented better results using
A = 2x1073 as shown in highlighted row in Table II. Fig. 4
presents the results of applying the UTDisC algorithm to
experimental data and using A\ = 2x 1073, These are presented
in the same way of Fig. 3. Comparing Fig. 3a and 4a, we
note the similarity in the graphs indicating the validity of
the proposed algorithm. We also note that the absolute values
of the minimum points of the cost function increase when
the diameters of the SDHs are larger. This is caused by the
first term of the cost function in Eq. (4) and may be related
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to two hypotheses: (I) the scattering amplitude expression
in Kirchhoff approximation is not proper for SDHs with
large diameters; (II) the backprojection algorithm for image
reconstruction is not suitable when the diameter of the SDHs
increases. We shall investigate these hypotheses in future work.
The reconstructed image by UTSR algorithm for a real SDH
of diameter 1 mm is shown in Fig. 4b. The UTDisC algorithm
has located the geometrical center of the SDH at = 15 mm
and z = 40.26 mm. The relative error in SDH depth was below
1%.

V. CONCLUSION

In this paper, we propose a new algorithm to estimate the
location and the geometrical parameters of discontinuities in
solid objects. The proposed algorithm is based on a new A-
scan observation model, in which the scattering amplitude
of the discontinuity is embedded in the impulse response of
the UIS. Also, the location of the geometric center of the
discontinuity is taken as the stimulus for this system. Thus,
the discontinuity characterization problem has two unknown
variables: (I) the location of the discontinuity; (II) the discon-
tinuity parameters. We approach it as a blind deconvolution
problem.

The proposed algorithm has two steps: (I) identification of
the discontinuity parameters in the impulse response of the
system; (II) image reconstruction to locate the discontinuity.
In the first step, the scatterring amplitude is calculated for each
vector of parameters in a grid search. The scattering amplitude
is embedded in H(®) and is used to estimate the discontinuity
location by the backprojection algorithm in the second step.
Finally, we use H(®) and discontinuity location to evaluate
the cost function of an optimization problem. The minimum
of this cost function indicates the most suitable solution
(parameters and location) to characterize the discontinuity.
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Figure 4. Experimental results for the UTDisC algorithm. (a) Graphs showing the results of applying the UTDisC algorithm to experimental data for SDHs
of diameter 1 mm, 5 mm and 10 mm, with A\ = 2x1073. Highlights indicate the minimum of Eq. (4b) for each SDH. (b) The reconstructed image by UTSR
algorithm for a real SDH of diameter 1 mm located at = 15 mm and z = 40 mm. The geometrical center of the SDH was located at = 15 mm and

z = 40.26 mm. The relative error in SDH depth was below 1%.

The results obtained in the simulations and the experimental
validation for characterizing SDH discontinuities demonstrate
the effectiveness of the algorithm. Future work includes:
(D application and performance evaluation of the proposed
algorithm on specimens containing other types of discontinui-
ties such as cracks and porosities (spherical voids); (II) a
performance comparison with other methods for discontinuity
characterization.
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