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Abstract—Compressed sensing is a signal acquisition scheme
that measures signals at sub-Nyquist rate amenable to sparse
recovery, with high probability, from a reduced set of measure-
ments. One of the main requirements of compressive sensing is
the sparsity of the class of signals of interest in some basis. A
method to construct a sparsifying basis for a class of signals
using information theoretic measures is proposed in this paper.
The algorithm constructs the sparsifying basis from a known non-
sparsifying basis by concentrating the probability distribution of
the basis in the representation of a class of signals. Simulation
studies using speech and image signals confirm that the basis
constructed using the proposed method results in an improved
sparsity of the signals with thresholded coefficients but without
degrading the signal quality.

Index Terms—Transform learning, Sparse representation,
Compressed sensing, Representation entropy, Sparse modeling.

I. INTRODUCTION

Compressive sensing is a method of capturing signals into
significantly less number of samples than stipulated by the
classical sampling theorem. The key to successful recovery
from these reduced set of random measurements lies with
the sparsity of the signal. Most natural signals belonging to a
high dimensional space have an underlying low-dimensional
structure in an appropriate model, which enables their sparse
representation [1].

An N -dimensional signal x is said to be K-sparse when
the representation of the signal in some known basis has l0-
norm1 equal to K, with K � N . For this signal, improving
the sparsity means reducing K. Increased sparsity allows
proportionately large reduction in the number of measurements
without affecting stable recovery [2]. In general, the sparsify-
ing basis for a signal is not known. Hence, the construction of
the sparsifying dictionaries or transforms for a class of signals
through learning becomes important.

Recently, there is large interest on the construction of over-
complete sparsifying dictionaries by learning from the data
itself [3] - [7]. There are two well known sparsity models [8]
to which the dictionary learning approach is applied. One is the
synthesis sparsity model which states that a linear combination
of a few of the dictionary atoms is sufficient to represent
the signal [8] [9]. The other is analysis sparsity model which

1l0, the number of non-zero elements in a vector, does not satisfy the
homogeneity property required for a norm. We use the term l0-norm for
readability.

suggests that the representation of a signal in the dictionary is
sparse [8] [9]. Ravishankar and Bresler explored the transform
sparsity model and proposed a parameter dependent transform
learning (TL) method for square transforms in [9], for or-
thogonal transforms (TLortho) in [11] and for overcomplete
transforms in [10]. In [12], Eksioglu et al proposed a parameter
independent transform learning method called the Transform
K-SVD (T-KSVD).

The condition number of the transform and the compress-
ibility of the signals relative to the transform generated by TL
algorithm [9] depend strongly on the parameters chosen. The
orthogonal transform learning of [11] is parameter independent
and gives good performance in attaining the specified sparsity.
Tipping and Bishop [13] proposed probabilistic Principal
Component Analysis (PPCA), where the PCA is effected using
an iterative expectation maximization algorithm.

The algorithm proposed in this paper is inspired by the
methods proposed in [9], [11], [12] and [13]. The proposed
algorithm (section III) is to learn a square sparsifying trans-
form for a class of signals from a known non-sparsifying
transform. It identifies an orthogonal sparsifying basis by
iteratively maximizing the concentration of the probability
distribution of the representation basis for a class of signals.
The probability of representation used in this paper is defined
in section II, and is not the same as the statistical probability
of the data set used in [13]. The experiments with speech and
image signals (section IV) show that the algorithm is capable
of constructing transforms that capture the underlying low-
dimensional structure of the class of signals. This method can
find applications in the dimension reduction of a dense data
set for sparse modeling. The algorithm depends on only one
parameter and the number of iterations is fixed. Hence the
algorithm provides freedom in its application to any class of
signals, without changing its framework.

II. PROBABILITY OF REPRESENTATION BASED
TRANSFORM LEARNING (PTL)

To derive the algorithm for transform learning using infor-
mation theoretic approach, we need to define the probability of
selecting each basis vector that represents the signal, and the
associated Shannon entropy of representation. In the sequel,
Shannon entropy and entropy are used interchangeably.

Definition 1: [14] Let Φ = {φi}Ni=1 be an orthonormal basis
of an N -dimensional space. Let x be a normalized signal
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belonging to a class of signals X such that x =
�N

i=1 biφi,
where b = [b1, b2, ...bN ]T is the vector of representation
coefficients of x relative to Φ and bi = �x,φi�. The probability
of choosing φi in the representation of x relative to Φ is
pi = |bi|2.

The basis Φ is not unique. Hence the basis relative to which
a class of signals has sparse representation may exist such
that the maximum information of the signals is concentrated
on a small set of vectors of the representing basis. Hence to
identify the maximum information bearing vectors of the basis,
the entropy of representation relative to such vectors should
be minimum. This entropy of representation is conditioned to
Φ, which means that the amount of information left in x is
H(x | Φ). The conditional entropy H(x | Φ) depends only on
the probability of representation of x relative to Φ, which is
p = {pi}Ni=1 as stated in definition 1. Since H(x | Φ) depends
on p which in turn depends on b, H(x | Φ) = H(b), where
H(b) is the Shannon entropy of representation of x relative to
Φ. Thus,

H(x | Φ) = −
N�

i=1

piln(pi), (1)

where, by definition 0× ln(0) = 0 [17].
Let Ψ = {ψi}Ni=1 be another orthonormal basis for the class

of signals X . The representation of x in Ψ is x =
�N

i=1 ciψi

with c = [c1, c2, . . . , cN ]T as the vector of representation
coefficients of x with respect to the basis Ψ and ci = �x,ψi�.
Hence the probability of selecting the i-th basis function of
Ψ is qi = |ci|2. The entropy of representation of the signal in
the basis Ψ is H(c) = H(x | Ψ) = −�N

i=1 qiln(qi).
The entropy H(c) is low when maximum information is

captured by a small number of basis vectors, and the coeffi-
cients of representation, arranged in the descending order of
magnitude, follow the power law decay as |ci| ≤ Ri−r, where
R > 0 and r > 1. In general, natural signals are not strictly
sparse in any basis, rather they are compressible in some basis.

The algorithm proposed in this paper constructs a sparsi-
fying basis Ψ from a known non-sparsifying basis Φ using
theoretical dimension as the measure of sparsity. The relation
between the theoretical dimension nΨ

th in a basis Ψ and the
entropy of representation H(c) is given by [15] [16]

nΨ
th = �exp(H(c))�. (2)

The advantage of theoretical dimension lies in the fact that it
gives the number of basis vectors required to capture atleast
90% of the signal energy. Hence it gives a measure for
quantifying the sparsity of a compressible signal.

If the two representation bases Φ and Ψ are known, the
mutual coherence (µ) between the two bases is given by [18]

µ = max
1≤i,j≤N

�φi,ψj�, (3)

where 1√
N

≤ µ ≤ 1. The relation between the entropies of
representation of a signal in these bases is given by the entropy
uncertainty relation [19] - [21].

H(b) +H(c) ≥ −2ln(µ). (4)

If the value of µ is low, and the entropy of representation
H(b) ≥ −2ln(µ), then the representation entropy H(c)
can attain its minimum value, zero. In other words, if the
theoretical dimension of the signal relative to Φ is at least µ−2

(non-sparse representation), then the theoretical dimension of
the representation in Ψ can be unity (sparsest representation).

While learning the transform for a class of signals,we would
need the representation entropy for all the signals in the class
to be the lowest, ideally. But, H(c) = 0 means that the
probability of selecting a particular basis vector is unity. Since
we are learning the transform for a class of signals, this lower
bound can hold good for a maximum of N signals, ideally.
So, in general, the lower bound on the representation entropy
would be non-zero; that is H(c) > 0.

Remarks: (1) In the algorithm proposed, µ is not used as
a parameter to construct Ψ. (2) It is not necessary that Φ be
a non-sparsifying basis for the algorithm to hold good.

III. PROBLEM FORMULATION

Dimension reduction can be attained through the reduction
of representation entropy. To maximally reduce the entropy of
representation relative to a basis, it is sufficient to make the
probability distribution of the basis, in the representation of
the signal, maximally concentrated.

Consider a normalized basis vector ψi and a signal x. By
Definition 1, the probability of choosing the basis vector ψi

to represent the signal x can be given by |�ψi, x/�x�2�|2. The
sparsest representation would be obtained if the probability of
selecting a basis vector is unity. This would give us the lowest
entropy H(c) = 0 and the theoretical dimension nΨ

th = 1. This
knowledge is used for finding the basis relative to which the
class of signals assumes low nΨ

th.
Considering a set of training signals as columns of the

matrix X , we attempt to find a basis vector which would
have a probability close to one in the representation of all
the signals in the training set. Let Pd be the row vector of
the desired probabilities (row of 1’s as the initial vector)
for all the signals in the training set. Let ψi be the basis
vector that is to be learned such that its probability in the
representation of the signals in the training set is as close to
Pd as possible. The probability of selecting the basis vector ψi

in the representation of the signal Xj is |ψT
i Xj |2, where Xj

is the j-th column of X . The vector of probabilities associated
with the basis vector ψi in the representation of the signals in
the training set is given by

�
ψT
i X

�2
= {|ψT

i Xj |2}Lj=1, (5)

where L is the number of signals in X . By Definition 1,
(5) holds good as probability vector if and only if �ψi�2 =
�Xj�2 = 1. Without loss of generality, we consider X to be a
collection of normalized signals. The requirement �ψi�2 = 1
constrains the ensuing optimization problem. Since we have
taken the probability of representation to be in terms of the
inner product, |�ψi, x�|2, we need to ensure that the basis
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vectors are orthogonal. Hence the optimization problem is

min
ψi

�Pd − (ψT
i X)2�22

subject to �ψi,ψj� = δij ; j = 1, 2 · · · i, (6)

where δij is the Kronecker delta. To simplify the optimization
problem, we have eliminated the constraint by using an
alternative approach to incorporate the constraint. The unit-
norm constraint can be incorporated by normalizing the basis
vector obtained as the solution to the optimization problem.
The orthogonality constraint can be taken care of by including
a penalty term in the objective function.

A. The Algorithm
The problem in (6) forms the first iteration in the algorithm

giving the first basis vector ψ1. As mentioned in section II,
it is not possible to obtain the extreme entropy minimization
for the class of signals because H(c) > 0. Hence, the basis
vector obtained as a solution to (6) need not capture all the
information present in the class of signals. Though we expect
most of the information to be captured by ψ1, practically
that is not possible and its probability of representation in
a few of the signals will be small. Hence, we need to find
subspaces orthogonal to the subspace spanned by ψ1 to get
the complete representation of all the signals. The subsequent
basis vectors can be obtained similarly, with a slight alteration
in the formulation as described below.

After finding each basis vector, the transform matrix can be
updated as

Ψ(i) = Ψ(i−1) ∪ { �ψi}, (7)

where Ψ(i) is the matrix of basis vectors that results at
the i-th iteration by maximally concentrating the probability
of representation of the training signals such as to capture
maximum information from the class of signals. The vector
�ψi is orthonormal to the vectors in Ψ(i−1). Since the vectors
in Ψ(i) are orthonormal, the signal estimate �X(i) at the i-th
iteration is given by

�X(i) = Ψ(i)
�
Ψ(i)

�T

X. (8)

The residual at the i-th iteration is updated as R(i) = X− �X(i).
This ensures that R(i) is orthogonal to Ψ(i). Hence the basis
vector ψi+1 that has maximum probability in the representa-
tion of R(i) should be orthogonal to the vectors in Ψ(i). Thus,
the orthogonality constraint of the problem (6) is ensured.

The desired probability vector, P (i)
d at the i-th iteration is

P
(i)
d = P

(i−1)
d −

�
�ψi

T
R(i−1)

�2

, (9)

where P
(i−1)
d is the desired probability vector that results at

the (i − 1)-th iteration, and ( �ψi

T
R(i−1))2 is calculated as in

(5), with X replaced with R(i−1). Hence at the i-th iteration,
the optimization problem becomes

ψ∗
i = argmin

ψi

�����P
(i−1)
d −

�
ψT
i

�ψi�2
R(i−1)

�2
�����

2

2

+λ�ψT
i Ψ

(i−1)�22.

(10)

Algorithm 1 Probability-based Transform Learning Algorithm
Input: Training set XN×L, Initial transform ΦN×N

Output: Sparsifying transform ΨN×N

1: Initialize:
Desired probability vector P (0)

d = [1, 1, · · · , 1]1×L

Residual R(0) = X
Sparsifying transform Ψ(0) = {∅}
Penalty parameter λ = 1

2: for i = 1 to N do
3: Set initial value of ψi = φi

4: ψ∗
i = argminψi

����P
(i−1)
d −

�
ψT

i

�ψi�2
R(i−1)

�2
����
2

2

+

λ�ψT
i Ψ

(i−1)�22
5: Normalize the resulting ψ∗

i�ψi = ψ∗
i /�ψ∗

i �2
6: Ψ(i) = Ψ(i−1) ∪ { �ψi}
7: Update the desired probability

P
(i)
d = P

(i−1)
d −

�
�ψi

T
R(i−1)

�2

8: Find the signal estimate
�X(i) = Ψ(i)

�
Ψ(i)

�T
X

9: Update the residual
R(i) = X − �X(i)

10: end for

The term ψT
i

�ψi�2
ensures the unit norm requirement of the basis

vectors as stipulated by Definition 1, making
�

ψT
i

�ψi�2
R(i−1)

�2

the probability vector associated with ψi/�ψi�2. As mentioned
above, since R(i−1) is orthogonal to Ψ(i−1), the basis vector
ψi should be orthogonal to Ψ(i−1), ideally. The penalty
term �ψT

i Ψ
(i−1)�22 is introduced to ensure that ψi is strictly

orthogonal to Ψ(i−1).
It is sufficient that the weight of the penalty λ is unity for all

classes since orthogonality is primarily ensured by the residual.
The performance of the algorithm is not altered by increasing
λ, but bringing λ close to zero may make the transform non-
orthogonal. The problem stated in (10) can be solved using
any conventional non-linear optimization algorithm.

The algorithm continues for N iterations, where N is the
dimension of the class of signals, ensuring the generation of
a complete basis.

B. Convergence

We have chosen the quasi-Newton method [22] to carry out
the minimization in (10), the convergence of which is well
known. To establish the convergence of the proposed algorithm
as a whole, we define the error terms of (10) at the end of the
i-th iteration as

ei = P
(i−1)
d −

�
�ψi

T
R(i−1)

�2

. (11)

To ensure the convergence, we need {�ei�2}Ni=1 to form a
bounded, monotonically decreasing sequence. Since the under-
lying vector space is finite dimensional, and hence complete,
{�ei�2}Ni=1 is bounded by �eN�2 = 0. From (9) and (11), we
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have P
(i)
d = ei. Substituting in the expression for ei+1,

�ei+1�2 =

����ei −
�
�ψ T

i+1R
(i)
�2

����
2

. (12)

Since
�
�ψ T

i+1R
(i)
�2

is a vector of non-negative numbers,
�ei�2 ≥ �ei+1�2 and {�ei�2}Ni=1 forms a monotonically
decreasing sequence. Hence the algorithm converges.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the potential of the transform
generated using the PTL algorithm proposed in this paper in
comparison with the transforms generated using the TL algo-
rithm [9], the T-KSVD algorithm [12], the TLortho algorithm
[11] and the Principal component analysis (PCA). The TL
and TLortho were studied experimentally using the softwares
available in [23] and T-KSVD algorithms using the software
available in [24], respectively. The values of the parameters
used in the TL algorithm were chosen so as to generate a well
conditioned transform, that is, the weight of log determinant
penalty and Forbenius norm penalty were 105. The step-size
of the optimization was taken to be 10−8 with 128 conjugate
gradient iterations. The number of alternating minimization
iterations considered was 20. The number of iterations for
TLortho was 5. A square transform case was considered for
the T-KSVD algorithm which was carried out for 70 iterations.
The sparsity was fixed to 5 for TL, TLortho and T-KSVD.
The initial basis used for all the algorithms was the standard
ordered basis (identity matrix).

A comparison is made in terms of the theoretical dimension
(nΨ

th). To study the efficiency of the algorithm in sparsifying
the class of signals, the sparsity in representing the signals
within the training set, and the signals belonging to the same
class but outside the training set were calculated. The classes
of training signals used were speech signals and image signals.

The minimization problem of (10) was solved using the
quasi-Newton optimization technique [22] because it does not
require the calculation of the Hessian, and hence fast. The
initial vectors taken for the optimization were the columns of
the identity matrix, that is Φ = I .

A. Speech signals

A set of 2450 signals of dimension 64 at 8kHz sample rate
were used in the training set. The performance comparison of
the transforms generated using PTL, TL, TLortho, T-KSVD ,
and PCA for this class of signals is shown in Table I. The table
gives the average nΨ

th of the representation of the signals, in the
training set and signals belonging to the same class but outside
the training set (test signals), with respect to the basis obtained
by PTL, TL, TLortho, T-KSVD, and PCA. The reconstruction
error energy normalized to the signal energy of a signal x is
given by �x−x��22/�x�22, where x� is the signal reconstructed
using the thresholded coefficients. The reconstruction error
curves of Fig. 1 show that the compressibility of signal
representation in the basis obtained from PTL is superior to
the transforms obtained through other learning methods and at

TABLE I
AVERAGE THEORETICAL DIMENSION OF SPEECH SIGNALS

Signal PTL PCA TL TKSVD TLortho DCT
Training 9 9 32 30 11 8

Test 14 14 33 31 16 13
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Fig. 1. Average normalized reconstruction error energies of speech signals
(a) in the training set and (b) outside the training set

par with PCA, indicating that PTL generates a transform that
sparsifies the representation of a class of signals.

The mutual coherence µ of the generated transform with
the standard ordered basis is approximately 0.3. Hence, if the
entropy of representation of the signal relative to the standard
ordered basis is greater than −2ln(µ) = 2.4, the minimum
entropy of the representation in the new basis should be zero
(by (4)). But since we are learning for a class of signals, this
minimum entropy situation is not attained.

B. Image signals

The algorithm was applied to a set of natural images for
identifying a sparsifying basis for image signals. The training
set was created by picking 8×8 non-overlapping patches from
a set of images. The number of training patches used was
7725. The 8 × 8 image patches were converted to a set of
64-dimensional vectors that forms the set of training signals.

Fig. 2 shows an image reconstructed using five of the basis
vectors that capture maximum energy. The amounts of energy
captured in the five basis vectors of the basis generated by
PTL, PCA, TL, TLortho, T-KSVD, and DCT are 99.98%,
99.98%, 80%, 98.5%, 95.5%, and 99.99%, respectively. The
perceptual quality of the image, reconstructed using the sparse
set of basis vectors identified by the PTL algorithm shows that
the basis is capable of achieving 80% gain in sparsity without
unduly degenerating the signal. The PSNRs (in dB) of the
images in Fig. 2 (b)-(g) are 26.05, 26.04, 13.6, 21.2, 25.1,
and 26.1, respectively.

C. Discussion

The performance of the algorithms were studied with dif-
ferent initial bases. For a given parameter setting of TL, and
initial basis chosen to be DCT, the compressibility curves of
the representation of the training signals in the basis obtained
by TL, T-KSVD and PTL are shown in Fig. 3(a). For the
same parameter setting of TL and initial basis chosen to be
the standard ordered basis, the compressibility curves of the
representation are shown in Fig. 3(b). It can be seen that the
basis generated using the TL algorithm depends strongly on
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(a)
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Fig. 2. (a) Original Image. Images reconstructed using five vectors in the
representation bases generated by (b) PTL (c) PCA (d) TL (e) TKSVD (f)
TLortho (g) DCT
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Fig. 3. Average normalized reconstruction error energies of speech training
signals with initial basis set as (a) DCT and (b) standard ordered basis.

the initial basis used. The basis generated by T-KSVD and
TLortho algorithms also depends on the initial basis but to a
smaller extent.

When the initial basis is the standard ordered basis, the
compressibility achieved with the representation basis obtained
by TL algorithm can be improved by changing the parameter
setting. But this shows the sensitivity of the algorithm to
the parameters. The PTL algorithm presented in this paper
has the least sensitivity to parameters and initial basis. The
value of λ can be taken close to unity for all classes of
signals. As depicted in Fig. 3, the compressibility curve of
the representation of the signals in the basis generated by
PTL is independent of the initial basis selected. The basis
generated by selecting different initial basis may be different
but irrespective of the initial basis, the PTL generates a basis
that is capable of capturing the information content in the class
of signals under consideration.

V. CONCLUSION

We have presented a novel algorithm for transform learning
by concentrating the probability distribution of the basis, in
the representation of a class of signals, to attain maximum
sparsity. The concentration of the probability distribution leads

to the reduction of dimension of the class of signals. This
algorithm can be used to identify the low dimensional structure
that underlies a dense collection of a given class of data. The
experiments with speech and image signals confirm that the
theoretical dimension of the signal relative to the new basis is
reduced significantly.
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