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ABSTRACT

Second-order differential microphone arrays (DMAs) are

one of the most commonly used DMAs in practice due to

the sensitivity of higher-order DMAs to microphone mis-

matches and self-noise. However, conventional second-order

DMAs are non-steerable with their mainlobe orientation

fixed along the array endfire direction, which are not appli-

cable to the case where sound sources may move around a

large angular range. In this paper, we propose a design of

second-order steerable DMAs (SOSDAs) using seven micro-

phones. The design procedure is discussed, followed by the

theoretical analysis on directivity factor and white noise gain

of the proposed SOSDAs. Numerical examples are shown to

demonstrate the effectiveness of the proposed design and its

theoretical analysis.

Index Terms— Differential microphone array, steerable

beamforming, superdirective beamforming.

1. INTRODUCTION

Microphone arrays have attracted great interest in audio and

speech processing, with applications such as teleconferenc-

ing, hands-free telephony and hearing aids, among many oth-

ers. A variety of designs for microphone arrays have been

proposed in the past decades. Among them, differential mi-

crophone Arrays (DMAs) whose responses are related to spa-

tial derivatives of an acoustic pressure field, offer some ad-

vantages over their additive counterparts, e.g., the delay-and-

sum arrays [1]. Comparatively, DMAs can achieve higher

directivity and frequency-invariant beampatterns with a small

array size.

Due to the fact that higher-order DMAs are more sensi-

tive to microphone mismatches and self-noise, lower-order

DMAs, i.e., first- and second-order DMAs, are mostly stud-

ied in practice [2–8]. It is noted that the mainlobe orientation

of conventional first- and second-order DMAs is fixed and

non-steerable, i.e., along the array endfire direction. In some
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Fig. 1. Array configuration of the proposed second-order

steerable DMAs.

practical applications, however, sound sources of interest

may move around a large angular range, and it limits the

use of the conventional non-steerable DMAs. To address the

problem, some design approaches for first-order steerable

DMAs have been proposed in the literature [9–13]. In this

work, we present a design and related analysis of second-
order steerable DMAs (SOSDAs), which is inspired by the

previous works [11–13]. The proposed SOSDAs consist of

seven microphones which are coplanar. Compared with the

first-order steerable DMAs [11–13], the use of additional

three microphones enables beam steering over the entire 360◦

azimuthal angles with a constant directivity factor (DF). The-

oretical analysis on DF and white noise gain (WNG) is also

presented. We evaluate the effectiveness of the proposed

design via some numerical examples.

2. PROPOSED DESIGN

2.1. Array Configuration

The array configuration of the proposed SOSDAs, consisting

of seven microphones M0,M1, · · · ,M6, is shown in Fig. 1,

where microphones M1,M2, · · · ,M6 are located on a circle

with a radius of r and microphone M0 is placed at the center

of the circle. Compared with the first-order steerable differen-

tial microphone arrays (FOSDAs) [11–13], herein three more

microphones have been employed, i.e., M0,M2, and M4.

For a unit-amplitude harmonic plane-wave impinging on
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the array with frequency f , and incident angle (θ, φ), where

θ ∈ [0, π] and φ ∈ [0, 2π] denote the elevation and azimuth

angles, respectively, the signal received by microphone Mi

can be expressed as

Ei = exp [jωt+ jωr sin θ (pxicosφ+ pxisinφ) /c] (1)

where ω = 2πf , t denotes the time, pxi and pyi represent

the x- and y- coordinates of microphone Mi, c is the speed

of sound, and j =
√−1. In the following, we assume that

ωr/c � 1.

2.2. Design of Second-Order Steerable DMAs

The implementation structure of the proposed SOSDAs is

shown in Fig. 2. The key to the structure lies in the three

branches constructing the monopole Em (the lower branch

in Fig. 2), the first-order steered dipole E
ϕs

1d (θ, φ) (the mid-

dle branch in Fig. 2), and the second-order steered dipole

E
ϕs

2d (θ, φ) (the upper branch in Fig. 2), where ϕs ∈ [0, 2π)
denotes the desired mainlobe orientation.

Proposition 1: The array response of the SOSDAs is cor-

responding to that of the conventional non-steerable second-

order DMAs with its mainlobe rotated to ϕs. Mathematically,

we have

E
ϕs

α1,α2
(θ, φ)

= (1− α1 − α2)Em(θ, φ) + α1E
ϕs

1d (θ, φ) + α2E
ϕs

2d (θ, φ)

≈ (1− α1 − α2) + α1 cos (φ− ϕs) sin θ

+α2 cos
2 (φ− ϕs) sin

2 θ. (2)

where E
ϕs

α1,α2
(θ, φ) denotes the array response of the SOS-

DAs, α1, α2 ∈ [0, 1] are the directivity controlling parame-

ters. Typically, when α1 = α2 = 1/2 it is corresponding to

the second-order cardioid, and when α1 = 1/3, α2 = 5/6
corresponding to the second-order hypercardioid.

As a special case, when ϕs = 0◦ it follows that (2) will

degenerate into the array response of conventional second-

order DMAs.

2.2.1. Construction of Monopole

The array response of the monopole can be expressed as

Em (θ, φ)=
1

7

6∑
i=0

Ei

=
1

7
(2 cosΘ31 + 2 cosΘ24 + 2 cosΘ56 + 1)(3)

where Θ31 = Ωsin θ cosφ, Ω = ωr/c, Θ24 = Ωsin θ×
cos (φ− π/4), Θ56 = Ωsin θ cos (φ− π/2). For the case

Ω � 1 (note that cosx ≈ 1 for small value of x), it can be

easily deduced that Em (θ, φ) ≈ 1.

2.2.2. Construction of First-Order Steered Dipole

The first-order steered dipole is constructed via two orthog-

onal first-order dipoles oriented toward 0 and π/2 radians,

respectively, i.e.,

E0
1d (θ, φ) = E3 −E1 = ejΘ31 − e−jΘ31 = 2j sinΘ31. (4)

E
π/2
1d (θ, φ) = E5−E6 = ejΘ56−e−jΘ56 = 2j sinΘ56. (5)

For Ω � 1, we have sinΘ31 ≈ Θ31, sinΘ24 ≈ Θ24.

Thus, by normalization the array response of the first-order

steered dipole can be expressed as

E
ϕs

1d (θ, φ)=
1

jω

c

2r

[
cosϕsE

0
1d (θ, φ) + sinϕsE

π/2
1d (θ, φ)

]

≈ cos (φ− ϕs) sin θ (6)

where 1/ (jω) is an integrator to obtain a frequency-invariant

dipole response and c/ (2r) is an extra compensation term to

normalize the dipole.

2.2.3. Construction of Second-Order Steered Dipole

To construct a second-order steered dipole, we need to em-

ploy three second-order dipoles with their mainlobes oriented

toward 0, π/4 and π/2 radians, respectively. The second-

order dipole oriented toward 0 radians can be constructed by

E0
2d (θ, φ) = 2E0 − E1 − E3 = 2− e−jΘ31 − ejΘ31

= 2 (1− cosΘ31) = 4 sin2 (Θ31/2)
(7)

Similarly, the remaining second-order dipoles oriented toward

π/4 and π/2 radians can be constructed according to

E
π/4
2d (θ, φ) = 2E0 − E2 − E4 = 4 sin2 (Θ24/2) (8)

E
π/2
2d (θ, φ) = 2E0 − E5 − E6 = 4 sin2 (Θ56/2) (9)

By (7), (8) and (9), the response of second-order steered

dipole (oriented toward ϕs) can be derived as

Eϕs

2d (θ, φ)

= cos 2ϕsE
0
2d (θ, φ) + sin 2ϕsE

π/4
2d (θ, φ)

+
1

2
(1− sin 2ϕs − cos 2ϕs)

[
E0

2d (θ, φ) + E
π/2
2d (θ, φ)

]

=4
[
cos 2ϕs sin

2 (Θ31/2) + sin 2ϕs sin
2 (Θ24/2)

]

+2 (1−sin 2ϕs−cos 2ϕs)
[
sin2 (Θ31/2)+sin2 (Θ56/2)

]
(10)

For Ω � 1, we have sin2 (Θ31/2) ≈ Θ2
31/4, sin2 (Θ24/2) ≈

Θ2
24/4 and sin2 (Θ56/2) ≈ Θ2

56/4. Therefore, (10) can be

reduced to

Eϕs

2d (θ, φ)

≈Ω2 sin2 θ
{
cos 2ϕs cos

2 φ+ sin 2ϕs cos
2 (φ− π/4)

+
1

2
(1− sin 2ϕs − cos 2ϕs)

[
cos2 φ+ cos2 (φ− π/2)

] }

=Ω2 cos2 (φ− ϕs) sin
2 θ.

(11)
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Fig. 2. Implementation structure of the proposed second-order steerable DMAs.

Furthermore, by normalizing the array response, we have

E
ϕs

2d (θ, φ) =
1

ω2

( c
r

)2

Eϕs

2d (θ, φ) ≈ cos2 (φ− ϕs) sin
2 θ.

(12)

where 1/ω2 is a second-order integrator and (c/r)2 is a com-

pensation term.

3. THEORETICAL ANALYSIS

In this section, the DF and WNG of the proposed SOSDAs are

analyzed theoretically. Due to the space limit, the theoretical

derivations have been omitted in the following.

3.1. DF

For spherically isotropic diffuse noise, the DF is defined by

Q =
4π|Eϕs

α1,α2
(π2 , ϕs)|2∫ 2π

φ=0

∫ π

θ=0
|Eϕs

α1,α2(θ, φ)|2 sin θdθdφ
. (13)

Proposition 2: The DF of SOSDAs with its mainlobe ori-

ented toward ϕs is given by

Q(α1, α2) ≈ 15

20α2
1 + 8α2

2 − 30α1 − 20α2 + 20α1α2 + 15
.

(14)

By (14), we can see that the DF of SOSDAs is indepen-

dent of the steering direction and also frequency-invariant.

For the SOSDA with second-order cardioid response we have

Q = 7.5, while for that with second-order hypercardioid re-

sponse we have Q = 9. These DF values are exactly corre-

sponding to those of their non-steerable counterparts.

3.2. WNG

To proceed, assume that the microphone signals Ei are all

contaminated with sensor noise ni, i.e.,

E
(n)
i (θ, φ) = Ei(θ, φ) + ni(θ, φ). (15)

With (15), the response of SOSDAs with sensor noise can be

rewritten in a matrix form as

E
(n),ϕs

α1,α2
(θ, φ) = H[E(θ, φ) + N(θ, φ)] (16)

where E = [E0, E1, . . . , E6]
T

, N = [n0, n1, . . . , n6]
T

,

with the superscript T being the transpose operator, and

H (Ω, ϕs) =
[
� + 2α2

Ω2 , �− α1

2jΩ cosϕs− α2

Ω2 (cos 2ϕs + ι) ,

� − α2

Ω2 sin 2ϕs, � + α1

2jΩ cosϕs − α2

Ω2 (cos 2ϕs + ι) , � −
α2

Ω2 sin 2ϕs, � + α1

2jΩ sinϕs − α2

Ω2 ι,� − α1

2jΩ sinϕs − α2

Ω2 ι
]
.

Herein, ι = 1
2 (1− cos 2ϕs − sin 2ϕs), and � = 1

7 (1 − α1

−α2).
WNG is defined as the array gain against spatially white

noise, which is a commonly used measure for the robustness

of beamformers [1]. When the temporally and spatially white

noise with the same variance at all microphones, the WNG

can be computed as

Gwn (Ω, θ, ϕs) =
|H (Ω, ϕs)E (θ, ϕs)|2
H (Ω, ϕs)HT (Ω, ϕs)

. (17)

Substituting E and H in (15) into (17) and performing

some approximation, we obtain the following proposition.

Proposition 3: The WNG of the proposed SOSDAs can

be deduced as

Gwn (Ω, θ, ϕs)

=

[
α1 (1−sin θ)+α2cos

2θ+�Ω2sin2θ
2 (3+sin 2ϕs)−1

]2

7�2 + 1
Ω4 [6α2

2 − 2α2
2 sin 2ϕs (1− sin 2ϕs)] +

α2
1

2Ω2

(18)

By (18), we can see that the properties of WNG are

quite different from those of DF. The WNG of SOSDA is no

longer frequency-invariant, and is an increasing function of

Ω (Ω = 2πfr/c), and hence an increasing function of signal

frequency f and the array size r. In addition, unlike the prop-

erty of DF, the WNG is dependent on the steering angle ϕs.
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Fig. 3. DF of the proposed SOSDAs versus ϕs, where Ω =
π/16.
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Fig. 4. DF of the proposed SOSDAs versus Ω.

Moreover, similar to the properties of non-steerable DMAs,

although the DF values of SOSDA are higher than those of

first-order counterparts, it is at the cost of low WNG.

4. NUMERICAL EVALUATION

In this section, we present some simulation results to demon-

strate the effectiveness of the proposed SOSDA design. For

ease of analysis, we assume that θ = 90◦ in the following.

Fig. 3 shows the DF of the proposed SOSDAs as a func-

tion of the steering direction ϕs for two types of array re-

sponses, i.e., second-order cardioid (α1 = α2 = 1/2) and

second-order hypercardioid ( α1 = 1/3 and α2 = 5/6),

where Ω = π/16. As we can see from Fig. 3, the DF of

the SOSDAs is nearly independent on the steering directions,

which is well consistent with the theoretical analysis. For

second-order cardioid response, its DF maintains around 7.5,

while for second-order hypercardioid response, its DF main-

tains around 9. In Fig. 4, the DF of the proposed SOSDAs
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Fig. 5. Beampatterns of the SOSDAs with Ω = π/16. (a)

second-order cardioid with ϕs = 60◦. (b) second-order car-

dioid with ϕs = 120◦. (c) second-order hypercardioid with

ϕs = 60◦. (d) second-order hypercardioid with ϕs = 120◦.

with various values of Ω is plotted, where two steering direc-

tions have been considered, i.e., ϕs = 0◦ and 60◦. Similar to

the theoretical result, the DF of the SOSDAs is shown inde-

pendent on Ω, and thus also independent on signal frequency,

for small values of Ω.

In Fig. 5, the beampatterns of the proposed SOSDAs are

shown for the second-order cardioid and hypercardioid array

responses, with Ω = π/16. Figs. 5(a) and 5(b) are corre-

sponding to the second-order cardioid response with ϕs =
60◦ and 120◦, respectively. And Figs. 5(c) and 5(d) are cor-

responding to the second-order hypercardioid response with

ϕs = 60◦ and 120◦, respectively. From Fig. 5, we can see

that the proposed SOSDAs can achieve beampattern rotation

to desired directions perfectly.

Next, we study the WNG of the proposed SOSDAs. Fig. 6

shows the WNG of the proposed SOSDAs as a function of

Ω, with ϕs = 0◦. Again, two types of SOSDAs with the

second-order cardioid and hypercardioid array responses are

considered. For comparison, the WNG of the conventional

non-steerable second-order DMAs (SODMAs) is also shown

therein. It can be seen from the simulation results that the

WNG of the SOSDAs is basically equal to that of the non-

steerable SODMAs. Moreover, as revealed by the theoretical

analysis, the WNG of the SOSDAs is indeed an increasing

function of Ω. In Fig. 7 the WNG of the proposed SOSDAs is

shown as a function of steering direction, where Ω = π/16.

Unlike the DF, we can see that the WNG of the SOSDAs is

no longer frequency-invariant, which agree well with the the-
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Fig. 6. WNG comparison of the proposed SOSDAs and the

conventional second-order non-steerable DMAs (SODMAs).

For the SOSDAs, ϕs is set to 0◦.
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Fig. 7. WNG of the proposed SOSDAs versus ϕs, where Ω =
π/16.

oretical analysis.

5. CONCLUSION

In this paper, we have presented an approach for the design of

second-order steerable DMAs, which can achieve beampat-

tern rotation to arbitrary directions over the whole azimuthal

space. Theoretical analysis on the DF and WNG of the pro-

posed SOSDAs is given, and some related properties are also

revealed. The effectiveness of the proposed design and its

analysis has been further demonstrated via simulation results.

In our future work, we will study the effect of microphone

mismatches as well as sensor self-noise on the SOSDAs.
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