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Abstract—In this paper, we propose a subspace based method
to localize multiple targets in the near field region of a bistatic
MIMO system with symmetric uniform linear arrays (ULAs).
The proposed method uses the symmetry in the transmitting
and receiving arrays to estimate the angle of departure (AOD)
and angle of arrival (AOA) of each target by using 1D rank
reduction estimator (RARE) based method. For each estimated
AOA, the range from the center of the transmitting array to the
corresponding target is estimated by using 1D multiple signal
classification (MUSIC). Finally, the receiver side range of each
target is estimated by using the other three estimated location
parameters in 2D MUSIC technique which also automatically
pairs the location parameters.

I. INTRODUCTION

Directly or indirectly, the applications like radar, sonar,
communication, etc. use the sources localization which makes
it an important field of research. In the literature, there exist
many passive sources localization methods [1]-[4]. However,
to localize the objects which do not emit their own ra-
diation, we need an active approach in which the objects
are illuminated by one or more emitters. In this direction,
MIMO system has received a lot of attention because it
uses multiple transmitters emitting orthogonal signals that
provide more degrees of freedom to improve the parameter
identifiability and angular resolution [5], [6]. There exist many
multiple targets localization techniques using a MIMO system.
However, the majority of them are dedicated to far field targets
in comparison to near field targets [7]-[11].

Near field targets cannot be handled like far field targets
because the emitted or intercepted waves can no longer be
considered as planar in the Fresnel region. Therefore, Fresnel
approximation is usually made in the near field region, in
which, the spherical wavefront is approximated as quadratic
surface wavefront to simplify the signal model [1]-[4]. There
are many near field sources localization methods in the liter-
ature, but only few directly deal with MIMO system [11]. In
this paper, we propose a method to localize near field targets
using bistatic MIMO system consisting of symmetric ULAs.
The proposed method can be considered as an extension of
the method in [3] to deal with the bistatic MIMO system. [3]
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uses two subarrays, however, the division of the array into two
subarrays is unnecessary. Thus, in the proposed method, we
use the whole array and its permuted version.

This paper is organized as follows. Section II provides the
signal model formulated for P point targets in the near field
region of a bistatic MIMO system with symmetric transmit-
ting and receiving ULAs. Section III describes the proposed
method to estimate the location parameters of targets viz. AOD
and AOA, distances between the targets and the center of
the transmitting array, and between the targets and the center
of the receiving array. Section V shows the performance of
the proposed method in terms of the estimation error of the
location parameters.

Notations

®, ®, and [J respectively denote the Hadamard-Schur, Kro-
necker, and Khatri-Rao products. £{e} is the expectation. [e]*,
[0]7, and [e] respectively represent the conjugate, transpose,
and Hermitian transpose of a matrix. R and C are the sets of
all real and complex numbers respectively. SRe{e} returns the
real part of a complex number. [¢] ! and det{e} respectively
denote the inverse and determinant of a square matrix. Iy
signifies an identity matrix of dimension N x N. Jx denotes
the permutation matrix of dimension N x N with ones along
its main antidiagonal and zeros elsewhere. 1 s n is the matrix
of ones of dimension M x N.

II. SIGNAL MODEL

Consider a narrowband bistatic MIMO system with sym-
metric ULAs containing M 2M + 1 transmitting and
N =2N+1 receiving omnidirectional antennas. Let d. and
d, be the distances between the consecutive antennas in the
transmitting and receiving arrays respectively. Additionally,
in the considered MIMO system, we assume that the signals
emitted by all the transmitting antennas are temporally orthog-
onal, with same bandwidth and same carrier frequency. P near
field targets reflect the signals emitted by the omnidirectional
transmitting antennas. Finally, the receiving array intercepts
the reflections from these P targets. At the receiving end,
matched filters separate the orthogonal transmitted signals for
each receiving antenna. In case of bistatic MIMO system, the

2467



2017 25th European Signal Processing Conference (EUSIPCO)

received matched filtered signal data at time ¢, y(t), is usually
modeled as [7]-[10]

y(t) = Cs(t) +n(t) (1)

where s(t) € CP*!, with zero mean and bounded variance,
contains mutually independent random complex reflection
coefficients of the P near field targets which follow Swerling
model II [12]. n(t) is the noise vector with spatially and
temporally white complex Gaussian components with zero
mean and variance 02. C = A B € CMN*P where

A= [G(Pe1,9e1)= a(Pe27962)7 Ty a(pe}neepﬂ 2

and

B = [b(prl79"'1)7 b(pT2797‘2)7

are the directional matrices of P targets associated with the
transmitting and receiving arrays respectively. A € CMxP
and B € CV*F. p. and p,, are the distances to the
pth target from the centers of the transmitting and receiving
arrays respectively where p € {1, 2, ---, P}. 0., is the AOD
belonging to the pth target measured at the center of the
transmitting array with respect to the axis of the array and
0, is the AOA of the pth target measured at the center of the
receiving array with respect to its axis. ¢, and 0,, may vary
from 0° to 180°. a(pe,,0c,) and b(p,, ,0;,) are respectively
the directional vectors of departure and arrival associated with
the pth target.

The component of a(p,,0.,) corresponding to index m &
{-M,---,-1,0,1,--- , M} can be written as [1]

a(m,p) = exp(—j2md(m,p)/A) “4)

s b(prpy 0rp)] ()

where )\ is the wavelength of the carrier wave and

5(m,p) = \/pgp +m2d? — 2md, pe, cos(fe,) — pe, (5)

is the difference between the distance traveled by the spherical
wavefront of the signal emitted by the transmitting antenna
with index m to reach the pth target and the distance traveled
by the wavefront of the signal emitted by the middle transmit-
ting antenna with index O to reach the same pth target.

The near field (Fresnel) region of the transmitting ULA is
a finite space around it bounded by the following lower and
upper limits of p., [3], [13]:

ro, = 0.62((2 M d.)®/\)? (6)

and
ry, = 2(2 M d.)*/ ). (7)

In the near field region of the transmitting array, §(m, p) is
approximated by using the second order Taylor expansion of

(5 [11H4], [11]

8(m,p) = —mwe, +m? o, ®)
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with w,, = d. cos(f.,) and ¢, = d? sin®(0.,)/(2pe,). In
terms of the approximated wavefront (8), the directional vector
of departure can be expressed as

[exp(—j2m (Mwe, + M?¢.,)/\) ]

1
a(pep7 eep) = )

exp(—j2m (—mt‘de,, + m? be,)/N)

lexp(—j 27 (~M we, + M g0, )/N).

The Fresnel approximation made above, for the transmitting
ULA, is also applicable to the receiving ULA. Using the
similar approach, we can express the pth directional vector
of arrival as

[ exp(—j27 (Nwr, + N?¢r,)/A) ]

1
b(Prpﬁrp) = (10)

exp(—j 27 (—nwr, + 1% éy, )/A)

lexp(—j27 (—Nt;irp + N2 ér,)/N)]

where w, = d, cos(0,), ¢,, = d2 sin*(0,,)/(2p,,), and
ne€{-N,---,-1,0,1,--- , N}. Like before, the lower and
upper bounds of p,, in the near field region of the receiving
array can be calculated as r7, = 0.62((2Nd,)*/\)'/? and
ru, = 2(2 N d,.)? /) respectively [3], [13].

III. PROPOSED METHOD

The symmetry in the transmitting ULA allows us to write
the following relation

JC=(D.O1y, ,)0C (11)
where J = J;; ® Iy and D, = [de(0.,), de(fey), -+
de(0.,)] with

[ exp(j4mMwe, /) ]
1
de(fe,) = (12)

exp(—j4mmuwe,/N)

lexp(—j4mMwe,/A)]

whose mth component is given by a(—m,p)a*(m,p). As
mentioned in [3], d. < A\/4 is a necessary condition to avoid
the phase ambiguity in the elements of Dp.

The covariance matrix of y(t) is given by

R =¢£{y()y" (1)} e VNN

=CR,C" + %I

MN (13)
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where R, = £{s(t)s(t)} is the reflection coefficient co-
variance matrix. The eigendecomposition of R can be written
as

R=U,A U + °U,UY (14)

where the diagonal elements of A; € RP*" are the P largest
eigenvalues and the columns of Us; € CMNXP are their
corresponding eigenvectors spanning the signal subspace. We
assume that Vthve nqmber of targets, P, is known. The columns
of U,, € CMNX(MN=P) gpan the noise subspace. From (13)
and (14), we can write

CT=U, (15)

with T' € CP*P being an invertible square matrix.
For an arbitrary angle 6, we can write

Fo(0) = JUs — [de(0) @ 15, p] © Us
=JCT—[de(0) @15, ©CT
=(DeO1ly,,)0CT

—[de(0) ® 1]\7><P] oCT
= ([de(be,) — de(0), de(bc,) — de(0), -~
de(eep) - de(o)} o 11\7><P) oUs

(16)

a7

from (11) and (15) (see [3] and [14]). At 6 = 0., all the
components of the pth column of F,(6) become zero and
F.(0) becomes rank deficient. Thus, we can use the following
spectrum function to estimate AODs [3], [14]

1

50 = Gt FE ) F(0))

(18)

The estimated AODs (say éep) of P targets correspond to the
P highest peaks of S, () when 6 is varied from 0° to 180°.

The subspace spanned by the directional vector of departure
is orthogonal to the noise subspace, therefore, the estimated
range corresponding to éep can be given by

1
Pe, = argmax

19
BN (G () Clp)) 1)

where G(p) = U [a(p, 0.,) ® Iy] € CMN=P)xN 1n (19),
when MN — P > N and p # pe,» G(p) has full rank and
det{G" (p) G(p)} is not zero. At p = p.,, det{ G (p) G(p)}
tends towards zero due to the orthogonality between the noise
subspace and the subspace spanned by the directional vector
of departure corresponding to the pth target.
Like the transmitting array, the receiving array is also a
symmetric ULA. Therefore, we can write
Ic=(1

OD,)oC (20)

MxP
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where I = Iy, ® Jy and D, = [dn(0,,), dr(0,), -,
d,(6,,)] with

[ exp(jdm Nwr, /)|

1

d,(0,,) = @1

exp(—j4mnw,/\)

lexp(—j4m N w,, /)]

d. < A/4 is a necessary condition to avoid the phase
ambiguity in the elements of D,. [3].

Like before, the AOAs can be estimated by using the
following spectrum function

1

5 6) = S {FT ) o)) =
where
Fr(0) =1U, 1y, p ® dr(9)] © Us (23)
= ( MxP o [d"‘(eﬁ) - d"’(e)v )
dT‘ (97“13) - dr (9)]) © Us (24)

can be obtained from (15) and (20). The estimated AOAs (say
éTp) of P targets correspond to the P highest peaks of S,.(6)
when 6 is varied from 0° to 180°. However, the AOAs are not
paired.

Finally, to get the estimation of the receiver side range of
the pth target, we use 2D MUSIC as

R 1

Or,, Or,) = argmax

(o Ora) = WIS BT, ) Qb(p. 0)
0€{0ry,+ 0rp}

(25)

where Q = [a(pe,, 0.,) ® 14" U, UH [a(pe,, 0.,) @ Iy).
Here, 6 is chosen from the set of unpaired AOAs which
reduces the computational cost. 2D MUSIC automatically
pairs the transmitting and receiving sides location parameters
for each target.

Initially, all the P AODs and AOAs are estimated in one 1D
search each. And then, the ranges belonging to transmitting
and receiving arrays of each target are estimated separately
by handling one target at a time. Therefore, all the location
parameters are automatically paired. Because of the spectral
search based methods, the proposed method is slower than
the method in [11]. Additionally, both methods use eigen
decomposition, however, the proposed method has computa-
tional complexity of O(P M3 N3) and method in [11] has
complexity of (9(]\7 3). The large computation complexity of
the proposed method is paid off by the maximum number
of targets it can locate. The proposed method can locate
N(M —1) targets whereas the method in [11] can locate only
N targets.
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IV. CRAMER-RAO LOWER BOUND

Cramér-Rao lower bound (CRLB) for the ranges and AOA
of multiple near field sources has already been derived in [2]
from [15]. Here, we directly use their closed form expression
by making some minor modifications to adapt the four location
parameters of each target due to the use of a bistatic MIMO
system. The submatrix of the inverse of the Fischer informa-
tion matrix corresponding to the desired parameters (i.e. the
location parameters of P targets) can be expressed as [2]

CRB(n) = % [zm { (1")H I 1"))

© [l ® (R,C" R CR,)"] }]_1 26)

where CRB(n) € RY¥Y*4P m = [po), -+, pep, Ocys -,
Ocrs Pris s Prps Oryy - 5 Op]T is the vector of the de-
sired location parameters of P targets, L is the number of
data samples, II5 = I, — C (CH C)"* C*, and

‘ﬁ = [acl/apeu Tty aCP/apfi}D? ac1/80617 ce
Ocp/00cp, Oc1/Opr,, -+, Ocp[Opyp,

861 /891"1’ ) acP/aQTP] (27)

with ¢, = a(pe,,0c,) ® b(pr,,0;,). The main diagonal of
(26) contains lower bounds of all the location parameters in
terms of variance for all the targets.

V. SIMULATION RESULTS

As an example, we consider a bistatic MIMO system with
M=9 (M = 4) transmitting and N =11 (N = 5) receiving
antennas. Each ULA is symmetric with d, = d, = \/4. In
Fig. 1, Fig. 2, Fig. 3, and Fig. 4, we compare the RMSE in
the location parameters (range associated with the transmitting
array, AOD, range associated with the receiving array, and
AOA respectively ) of two targets estimated by the proposed
method and the method in [11] with respect to SNR. The
SNR is varied from 0 dB to 30 dB with an interval of 5 dB.
The location parameters (pe,, Oc,, pr,, 0r,) of the two targets
are (1.8, 40.5°, 2.8\, 130.5°) and (3, 120.5°, 4, 70.5°).
L = 1000 samples and K = 1000 Monte Carlo trials are used
to compute the RMSE from the following equation

€O) =\ 36 2 (k) = y)° a8)

k=1

where 1, € {pe,, Oc,, pr,, 0r,} and 7, (k) € {pe, (k), éep(k),
pr, (K), érp(k:)} is the estimated value in the kth trial. The
CRLBs of the location parameters are calculated from (26).
Let CRB(7,) be the CRLB of the 1, parameter belonging to
the pth target in terms of standard deviation.

From the figures, we can observe that the proposed method
has better performance in terms of RMSE than that of the
method in [11]. The primary reason of the poor performance
of the method in [11] is that it does not exploit all the available
information.
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Fig. 1. RMSE in range associated with the transmitting array estimated by
the method in [11] and the proposed method versus SNR.
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Fig. 2. RMSE in AOD estimated by the method in [11] and the proposed
method versus SNR.

VI. CONCLUSION

In this paper, we have proposed an extension of the method
[3] to localize near field targets using a bistatic MIMO
system consisting of symmetric transmitting and receiving
ULAs. Compared to the existing method in [11], the proposed
method has better performance because we exploit all the
information. Along with it, the proposed method automatically
pairs all the four location parameters. [11] uses submatrices
of the covariance matrix, therefore, the maximum number
of localizable targets is limited by the number of receiving
antennas. For the proposed method, the maximum number of
localizable targets is given by N (M — 1).

As a future work, the performance of the proposed method
can be investigated by applying the advanced covariance esti-
mators [16]-[19] and by using real radar data in the presence
of multipath effects [20].
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Fig. 3. RMSE in range associated with the receiving array estimated by the
method in [11] and the proposed method versus SNR.
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Fig. 4. RMSE in AOA estimated by the method in [11] and the proposed
method versus SNR.
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