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Abstract—Traditional optical imaging has limitations in cap-
turing and representing pavement cracks due to the impact
of illumination variations and cast shadows. In this work,
laser-imaging techniques are employed to model the pavement
surface with dense 3D points, and a sparse points grouping
method is proposed to detect cracks from the 3D point clouds.
Firstly, an algorithm based on frequency analysis is presented to
separate potential cracks from the control profile and material
texture of the pavement. Secondly, range images generated from
point clouds are partitioned into image patches, and a learning
algorithm is used to identify image patches probably containing
cracks. Thirdly, the extracted patches are further filtered by
checking the consistency of potential crack directions. Finally,
edge weights are assigned to crack seed pairs by referring to
the Gestalt law, and minimum spanning tree based algorithms
are developed to extract the final cracks. Extensive experiments
demonstrate the effective of the proposed method.

I. INTRODUCTION

The pavement crack is the most common distress on road
surface. Automatic crack detection and timely crack repairing
are very important to traffic safety and management economy,
which promotes the development of crack detection systems
and algorithms [1]-[7]. Traditional optic-imaging-based crack
detection methods often have limitations since the quality of
optic images can easily be undermined by the illumination
variations and cast shadows and the consequent complications
would heavily increase the difficulty of pavement crack de-
tection [8]. To overcome the above weakness of using optic
imaging, this work models the pavement surface by utilizing
a 3D laser imaging technique, and develops new algorithms
to detect pavement cracks from dense 3D point clouds.

In the past several years, 3D laser imaging techniques have
been widely used in a variety of engineering applications
including pavement crack detection [9]-[15], in which line-
structure laser scanning techniques were used to produce 3D
profile of pavement surface. The 3D laser profiling data reflects
the relative change of pavement elevation on pavement cross
section. Generally, the fractures in elevation are obviously
different between the normal textures caused by pavement
particles and the cracks, since the 3D crack’s elevations are
mostly lower than texture’s elevations, and cracks usually have
good continuity, directionality and aggregation. The factors
that influence data quality in optic imaging such as shadows,
ambient light, road surface stains have little impact on the 3D
laser imaging case. However, the crack detection based on 3D
laser points needs to overcome several key problems:
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o Separating particle textures from the profiling data. The
pavement textures and pavement cracks can easily be
confused as both of them are high frequency signals while
showing local fluctuations. The rich texture fluctuation of
the pavement will affect the accurate detection of cracks,
especially for the cracks with shallow depth.

o Separating the control profile from the profiling data.
The control profile of road pavement is formed in road
construction, and it can be affected by the pavement
macro-deformation such as pothole, which increases the
difficulty of accurate pavement control profile extraction.
The bias of the extracted control profile will incur less
precise localization of cracks.

e Detecting the whole pavement cracks accurately. The
cracks in the 3D cross section usually displays its aggre-
gation but poor continuity in shifted depth, which leads
to the detected cracks are often in fragments rather than
its complete structure.

In this work, based on the frequency analysis of the laser
profiling data, we proposed algorithms to separate the pave-
ment textures and control profile from the profiling pavement
cross section. After the separation, we transform the laser point
cloud into range images, in which we carefully formulate the
threshold to preserve the potential cracks while removing the
pavement texture. Then, a sparse points grouping method is
performed to detect pavement cracks which contains several
key steps such as crack sub-block classification, crack blocks
filtering and crack seeds grouping. Finally, the proposed crack
detection method is validated by extensive evaluations on large
real datasets in the experiments.

II. 3D LASER PROFILING DATA PREPROCESSING

The asphalt pavement is mainly made up of asphalt con-
crete, including asphalt material in dark and grain ingredients
with different size. Generally, the grain ingredients constitute
a uniform textured structure with slight undulation on the
pavement surface — grain texture, which provides necessary
friction forces for the traffic. The road pavement in the absence
of pavement distresses commonly holds a relatively uniform
shape — control profile. Therefore, the road surface profiling
by a laser imaging is a compound of the grain texture,
road control profile and the distress shape, as illustrated by
Fig. 1. It is necessary to decompose these components by data
preprocessing.
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Fig. 1. An illustration of profile decomposition in laser scanning. (a) A
profiled pavement surface captured by laser imaging — the real profile. (b)
The grain texture. (c) The road’s control profile. (d) The profiled cracks.

A. Profile data frequency analysis

In digital signal processing, the fast Fourier transformation
(FFT) is often employed to transform the signal from the time-
space domain to the frequency domain. The low-frequency
component of the signal represents the basic trend of the signal
variation, while the high-frequency component represents the
relatively sharp signal change. In the space-time domain,
the pavement texture, crack and pavement control profile are
compound and difficult to perform the accurate extraction and
location of the pavement control profile and crack detection.
In the frequency domain, the pavement texture and crack cor-
respond to the high frequency part in the spectrum, while the
pavement control profile correspond to the low-frequency part.
Therefore, the FFT can effectively separate the control profile
from the profiling data. Figure 2(a)-(c) show the amplitude
and power spectrum of the signal after FFT. As the pavement
control profile is a smooth part of the pavement surface, it can
be intercepted using the band-pass filter.
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Fig. 2. The top row shows the results produced by FFT, and the bottom row
shows the control profiles at different filtering values (F51). (a) The original
profile of a traverse section of the pavement. (b) The amplitude spectrum
of the FFT frequency. (c) The power spectrum of the FFT frequency. (d)
F51=0.003*Fgz. (e) Fs1=0.015%Fg. (f) Fs1=0.03*Fp.

B. Control profile calculation

In contrast to the FFT process, the inverse fast Fourier
transformation (IFFT) transform the signal from the frequency
domain to the space-time domain. The IFFT result based
on the low-frequency band power spectrum corresponds to
the pavement control profile. The low-frequency signal after
filtering ranges from 0 to Fj;, and the recovered control
profiles are shown in Fig. 2(d)-(f) at three different Fjq,
respectively. Note that, Fiy denotes the maximum band power

ISBN 978-0-9928626-7-1 © EURASIP 2017

of the frequency spectrum. When the filtering frequency Fj;
= 0.003* F7, the recovered control profile is so smooth that
it deviates from the ground truth control profile, as shown in
Fig. 2(d). For F; = 0.015*%Fy, the recovered control profile
well represents the shape of road surface, as shown in Fig. 2(e).
For F; = 0.03*Fy, the recovered control profile is too fine
to avoid the cracks, as shown in Fig. 2(f). In our work, we
empirically set F51=0.015*Fy to obtain the control profile.

C. Potential crack separation

It is necessary to calculate a threshold value for each cross-
section profiling data by analyzing the texture distribution,
and obtain the potential cracks by using the threshold value
and the pre-computed pavement control profile. The elevation
difference between the pavement profile and the control profile
can reflect the distribution of the elevations of the texture in
each cross section. Let PP; and C P; be the elevation values
of the ith point on the pavement profile and control profile,
respectively, then, the mean difference and the mean squared
values of the texture can be calculated by Eq. 1 and Eq. 2,

N
1
AvgTex = N;UDH - CP, (D

1 1
DevTex = [N Z(|Ppi — OP;| — AvgTex)?]2,  (2)

i=1

N
where N represents the total number of sampling points on
a single section. The split threshold 7 can be calculated by
Eq. 3, in which k is the coefficient of threshold (2 < k < 3).
And the potential crack point on the section can be judged by
Eq. 4, hence a binary crack map can be obtained to indicate
the potential cracks.

T = Avglex + k x Devlex 3

“4)

0, else

5 _{1, if (PP;—CP)>T

III. PAVEMENT CRACK DETECTION

In this section, we introduce our crack detection methods
using 3D laser data. First, binary crack maps are divided into
sub-blocks. Second, sub-blocks are classified and the regions
of confidence (ROC) are selected. Third, ROCs are filtered by
checking the direction coherence. At last, the minimum cost
spanning tree is adopted to extract the final cracks.

A. Crack sub-block classification

The binary map is divided into sub-blocks, e.g., 20x20
pixels, for initialization and rapid extraction of the crack
region. After that, a classification method based on SVM is
used to classify the sub-blocks, and the sub-blocks that are
likely to contain cracks are selected on the binary crack map,
which are called crack sub-blocks.
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Fig. 3. An illustration of pavement crack detection. (a) A laser range image
produced from frequency band-pass filtering. (b) The binary map of potential
cracks. (¢) SVM classification of sub-blocks. (d) Crack sub-blocks filtering
and linking. (e) Target-point growing.
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Fig. 4. (a) A set of morphological sub-blocks with high confidence. (b) A
set of morphological sub-blocks with low confidence.

B. Crack sub-blocks filtering

The crack sub-blocks can be regarded as a narrowed crack
region. The crack geometry, cracking direction of extension
and spatial aggregation are similar for the sub-blocks of a
true crack. Considering that the cracks have a certain length,
extension trend and aggregation in the cracking direction, the
crack sub-blocks with low length, larger direction deviation
and low degree of aggregation in the main direction hold lower
confidence. Accordingly, the following rules are designed to
filter the crack sub-blocks:

i) Crack-length filtering. The crack length refers to the sum
of crack length of a sub-blocks set. The confidence of the sub-
blocks set with short length is low. A threshold 7; is set to
indicate the crack sub-blocks with high confidence.

ii) Direction-coherence filtering. The sub-blocks should
have similar cracking properties. The sub-block direction can
be determined by the spatial relationship between the current
sub-block and the next sub-block, as illustrated by the solid-
line arrows in Fig. 4. Comparing the direction a neighboring
region (6,¢;) and the direction of the current sub-block di-
rection (Ocyr), if |Onei — Ocur| < To, they are considered as
consistent, where Ty = m/4. Figure 4 illustrates the above
filtering settings.

iii) Crack sub-blocks linking. A pavement crack is typically
an irregular linear target, which is formed by short crack
segments, and influenced by the road conditions. In the range
image, the depth values of shallow segments of a crack are
small. These shallow crack segments usually lead to the two
complications: (i) true crack sub-blocks may be classified as
non-crack sub-blocks; (ii) crack sub-blocks may be judged as
noise sub-block and removed in the filtering process. Thus,
cracks often break at the shallow crack segments. In this
paper, sub-blocks with similar spatial location and direction
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Fig. 5. An illustration of crack seeds grouping. (a) A pavement depth map.
(b) The crack seed regions. (c) The crack seed points (in red). (d) Crack seeds
association. (e) Crack seeds grouping result.

are linked as a whole, which ensures that the sub-block
sets exactly cover the area where the cracks are located and
facilitates the complete detection of cracks.

e Calculating the sub-block set’s direction 6;

e Collecting the endpoint set of the sub-blocks F;

¢ Calculating the minimum Euclidean distance minD;;
between endpoint set E; and Ej;. If minD;; < Ty,
and |0p,e; — Ocur| < T, the crack sub-blocks satisfy the
extension condition and should be linked.

A real example for crack sub-blocks filtering and linking is
shown in Fig. 3(d).

C. Crack seeds grouping

A target-points grouping algorithm based on the minimum
cost spanning tree is presented to complete the crack extrac-
tion. It contains the following steps:

1) Extracting the original crack seed region. Firstly, the
potential crack points with longer connection length in the sub-
block region are extracted as the original crack seed region,
and the connection length threshold T, is defined by Eq. 5,
where L. is the length of current sub-blocks set.

Tse = min(100, maz(30,0.05 * Lg.)) (%)

ii) Selecting crack seeds. In order to get the endpoint and the
crack direction of the seed region accurately, the seed region
should be refined to get the crack skeleton in it. The corner
detection method is used to extract the turning points of the
crack skeleton, which will serve the adaptive partitioning the
crack skeleton into short segments. The endpoints of crack
segments are taken as the crack seeds.

iii) Associating crack seeds. Two pairs of cracked seed
points are connected, if the two seed points belong to the same
crack seed region, the edge is replaced by the crack segment
itself, and marked as the real edge. Otherwise, it is marked as
the virtual edge. Where the set of real edges is denoted by R
and the set of virtual edges is denoted by V.

iv) Assigning weight values to the edges. The value and
confidence of the edge are positively correlated — the lower
confidence, the smaller the edge weight. In addition, according
to the geometric characteristics such as the length and direction
of the real edge, we assign the weight to the real edge, and
then take the real edge weight as the reference and assign each
virtual edge a reasonable weight by considering the grouping
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Fig. 6. Experimental results on different types of cracks. (a) Traverse crack.
(b) Longitudinal Crack. (c) Block crack. (d) Irregular crack. (e) Repaired
crack. Note that, an optic image is provided in the left of (e) to show the
repaired crack.

rule of proximity, similarity and continuity. Specifically, the
weight value is calculated by Eq. 6.

0.1, Zf € € R
W lij, elseif e;; € V,1l;; <Ty,
i =
lij + 1% (Cl o, +Chmy) * 0imi — Ojmy |/
elseif ej; €V, lij>TrL,em, i em,; €ER
(6)
where
G = : if eij €ER
7 0.5% 1 j/Limaz + 0.5 % Ol j /OLmaz’ if e
(7
and
Cl{,j = Ci,j/SRmawa if €5 € R. 8)

In the above formulations, 7,7 denote the index of a pair of
crack seeds, e; ; denotes the edge with seeds ¢ and j being
its two vertex. [; ; denotes the length of e; ;. C;; and C] ;
denote the original weight and the normalized weight of e; ;,
respectively. Ol; ; is the length of the original crack seed
region of edge e; ;. Lyqz and OLp,,, are the maximum
length values of the edges and the original crack seed regions,
respectively. SRynq. is the maximum original weight, 0; ;
represents the direction from the seed point ¢ to the seed
point j. As for m; and mj, they denote the indices of the
corresponding points which are at the other side of ¢ and j in
the real edges.

v) Crack seeds grouping. The crack path is obtained by
using the principle of minimum cost spanning tree, and the
crack path is fused with the crack seed region. After that, the
final cracks is obtained. Figure 5(e) shows an example result of
crack seeds grouping. In Fig. 5(d), only the edges with lower
weights are plotted in order to make a clear display. The red
color in Fig. 5(e) indicates the crack seed region while the
green color indicates the crack linking.
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IV. EXPERIMENTS AND RESULTS

In order to validate the effectiveness and verify the univer-
sality of the proposed method, a large number of real collection
laser profiling data are used for evaluation, which includes
different types of cracks captured at different traffic speeds.

The data included five types of cracks: traverse crack,
longitudinal crack, block crack, irregular crack and repaired
crack. Some results are shown in Fig. 6, where the crack
detection results are marked with red lines. Note that, in
Fig. 6(e), the leaded oil makes no significant depth change
in the range image.

To quantitatively illustrate the accuracy of the proposed
method in detecting various types of cracks, 13.3 thousand
data samples captured in 10 road sections are used for evalua-
tion. The results are listed in Table 1. Note that, P denotes the
number of images containing cracks, N denotes the number of
images without cracks. FN denotes the number of the images
judged as non-cracked images but indeed containing cracks.
FP denotes the number of the images judged as cracked images
but indeed not containing cracks, TP denotes the number
of images in which cracks are correctly identified, and TN
denotes the number of non-cracked images that are correctly
identified. In this paper, three metrics FNR (false negative
rate), FPR (False Positive Rate) and PPR (Predicted Positive
Rate), which are defined by Eq. 9, are used to evaluate the
crack detection performance.

FNR = FN/P % 100%

FPR = FP/(TP + FP) x 100% ©9)
PPR = (TP + TN)/(P + N) * 100%

TABLE 1
RESULTS ON A LARGE-SCALE DATASET.
Crack

Grack Widh | N 3 P ™ N | Fp Fg‘; f,‘;? '(’,l;'){

ype (mm) 3 3 o
Trvere | <2 | 186 | 1396 | 2 | % [ M | & [ D0 | 323 | Wi
Crack S5 | 736 | 8% [ 69 [ 1278 | &7 | &8 | 64 | 90 | 92
Tongit S A I O T S I VT 0 Y
Crack S5 [ a8 | Dia | W@ [ 0% | 27 | 36 | 38 75 [ 995
Block 3 | 157 [ Tem [ % [ 13w | 12 [ 177 | 76 | 105 [ 98
Crack S>3 | s [ 1251 [ 80 [ 1275 | 20 | 36 | 24 | 43 | 96
Tregular | <3 | 31 | 3451 | 18 | 13425 | 13 | 2% | 99 | 1 [ 97
Crack >3 | s [ el [ 82 [ 12 | 9 [ 2 | 1d 76 | 9%
Repaired - 82 | 12710 | 82 | 1287 | 20 | 23 | 23 26 | 997
crack

It can be observed from Table I that, the overall detection
rate of all types of cracks in the experiments is above 98.0%.
Under the same conditions, the wider the crack width, the
lower the FNR and the FPR. This is because that wider
cracks have better continuity on the pavement. The FNR
and FPR of the block cracks and the irregular cracks are
lower than that of the traverse and longitudinal cracks. The
possible reason is that most of the crack width of a block
crack or an irregular crack are generally wider than that of the
traverse and longitudinal cracks. The identification accuracy
of longitudinal crack is higher than that of traverse crack.
The main reason for this phenomenon is that the resolution of
the laser imaging data in the longitudinal direction is higher
than that in the traverse direction. The above results show that
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proposed method obtains accurate and complete detection of
five different types of pavement cracks on the laser imaging
profiling data.

In order to examine the effect of speed on the performance
of the proposed method, various traffic speeds, i.e., 10, 20, 30,
40, 50, 60, 70 and 80 km/h, are used when measuring the same
road section. A sample pair of captured laser range images and
the crack detection results at 30km/h and 80km/h are shown
in Fig. 7. It can be seen from Fig. 7, the detected cracks
are similar for the two speed settings, which demonstrates the
method proposed in this paper can meet the requirement of
detecting the crack at different measuring speeds. Meanwhile,
with the increase of measuring speed, the posture turbulence
of the vehicle becomes more and more heavy. However, the
crack detection results are also very good when suffering from
heavy posture turbulence in high speed measurement. The
main reason is that this method can eliminate the influence of
posture turbulence by extracting the potential crack points in
data pre-processing by separating the pavement control profile
from the laser profiling section data.

In addition, comparisons are conducted by applying the
proposed method on optic images and laser range images with
regarding to the same road areas. Several example image pairs
and crack detection results are shown in Fig. 8. We can see, the
optic imaging can easily be influence by illuminance variation,
and the cracks in the laser range images are more apparent
than in optic images, and the crack detection results on laser
range images are better, which indicates that the proposed
crack detection method using 3D laser imaging has a good
applicability for measuring under ambient illumination.

(a) 30km/h (b) 80km/h
Fig. 7. Crack detection results at different speeds.

V. CONCLUSION

In this paper, pavement crack detection using 3D laser
profiling data was studied. The frequency analysis was per-
formed to decompose the profiling data, and potential crack
map was generated. Then a sparse points grouping method
was proposed to detect the cracks from the binary crack map.
Experiments on a large laser profiling dataset showed that
the proposed method can effectively detect different types of
cracks such as the traverse crack, longitudinal crack, block
crack, irregular crack and repaired crack at different measuring
speeds. Compared with the optic-imaging-based crack detec-
tion method, the 3D laser crack detection method can over-
come the influence of cast shadow and uneven illumination.
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Fig. 8. Comparison of crack detection results on 2D and 3D pavement data.
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