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Abstract—In modern wireless networks, optimizing the associ-
ation between base stations (BSs) and users effectively improves
network performance. On the other hand, a frequently changing
BS-user association renders considerable operational burden for
network management, e.g., it consumes extra power to awaken
the deactivated BSs and to support users’ switching among BSs.
This motivates us to balance the flexibility and stability of BS-user
association, leading to a long-term BS association problem. In this
paper, we address this by considering the green communication
problem in a MISO network where multiple BSs cooperatively
forward information to multiple users. We minimize total power
consumption (including not only the transmit power and device
maintenance power, but also the switching power consumed as the
BS-user association changes) by joint long-term BS activation and
beamforming, i.e., we jointly optimize the active BSs, the transmit
beamformer and the user switching frequency among BSs. Due
to the inherent causality constraints on channel state information
(CSI), we develop an online algorithm for the optimization prob-
lem, utilizing the sample average approximation (SAA) method.
To improve the algorithm’s efficiency, we further fit the problem
into the framework of alternating direction method of multipliers
(ADMM), and finally design a low-complexity distributed online
algorithm for the green communication problem.

I. INTRODUCTION

As one key issue in green wireless communications, power
minimization has drawn extensive attention recently [1], [2]. In
addition to transmit power, the maintenance power consumed
to keep the devices in good conditions becomes non-negligible
in modern wireless networks, where a large number of base
stations (BSs) are densely deployed for coverage enhancement
[3]. Therefore, one popular strategy for green communication
is joint BS activation and beamforming [4], which effectively
balances the maintenance power and the transmit power.

On the other hand, most existing joint BS activation and
beamforming algorithms optimize the active BSs according to
instantaneous channel state information (CSI) [4]–[9]. Con-
sidering the time-varying characteristics of wireless channels,
the BS’s active status changes quickly. Consequently, BSs are
activated and deactivated frequently and users switch among
different BSs continually. However, this renders considerable
operational burdens in practice. For instance, frequently shut-
ting down and restarting BSs consumes more power than that
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in normal maintenance. Some necessary switching (handover)
operations need to be implemented as users switch to another
BS, thus introducing extra power consumption [3]. Moreover,
changing the BS-user association frequently may even cause
service break.

This motivates us to consider the stability of BS-user asso-
ciation in joint BS activation and beamforming optimization,
referred to as joint long-term BS activation and beamforming.
Unfortunately, few works have emphasized the stability of BS-
user association. In [10], a switching decision strategy consid-
ering transmission latency and handover signaling overhead
is proposed utilizing Markov decision processes. A long-term
transmit point (TP) association method is developed in [11] to
maximize system throughput, where the stability of TP-user
association is guaranteed by prohibiting users from switching
among TPs in a relatively long time period.

In this paper, we consider the green communication prob-
lem in a downlink MISO network that consists of multiple
BSs and multiple users. Under some quality-of-service (QoS)
constrains, we minimize the total network power consumption,
including not only the maintenance power and the transmit
power, but also the switching power consumed to awaken the
deactivated BSs and to support the users’ switching among
different BSs. To this end, we jointly optimize the active BSs,
the BS transmit beamformer and the user switching frequency.
We should mention that instead of forcing a static BS-user
association in some given time period as in [11], we formulate
the long-term BS activation problem from the perspective of
sparse optimization, i.e., we require the variation of BS-user
association to be a sparse vector.

Considering the inherent causality constraints on CSI [12],
we develop an online algorithm to successively solve the joint
BS activation and beamforming problems in different timeslot-
s. Specifically, the active BSs in each timeslot are determined
jointly with the consideration of the active BSs in the previous
timeslot and the expected active BSs in the next timeslot. To
avoid directly handling a complicated stochastic optimization
problem, we utilize the sample average approximation (SAA)
method to approximate the expectation by a sample average
[13]. Moreover, to solve the approximated problem efficiently,
we further fit the problem into the alternating direction method
of multipliers (ADMM) framework [14], [15]. Finally, a low-
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complexity distributed online algorithm is developed.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider the downlink transmission in a network where K
N -antenna BSs forward information to M single-antenna users
cooperatively. We employ block fading channels here, namely,
the channels remain static in each fading block, while changing
from one block to another according to the channel distribution
[16]. We define each fading block as a timeslot, and consider
the transmission in a time period of L timeslots.

Next, define wm(l) and hm(l) ∈ CKN×1 as the multi-BS
cooperative transmit beamformer and the associated channel
for user m in timeslot l, where wk

m(l) and hkm(l) ∈ CN×1

are the kth row blocks of wm(l) and hm(l), respectively,
denoting the beamformer of BS k to user m and the associated
channel for k = 1, ...,K, m = 1, ...,M , l = 1, ..., L. P is
the power budget of the BSs, and σ2 is the noise power.
Define ak(l) ∈ {0, 1} as the active indicator of BS k; that
is, BS k is active in timeslot l if ak(l) = 1, and inactive if
ak(l) = 0. Let W(l), H(l) and a(l) denote the collections of
the cooperative beamformers, the associated channels and the
BS active indicators in timeslot l, respectively, i.e., W(l) =
[w1(l),w2(l), ...,wM (l)], H(l) = [h1(l),h2(l), ...,hM (l)],
and a(l) = [a1(l), a2(l), ..., aK(l)]T .

Taking the maintenance power, transmit power and switch-
ing power into account, we calculate the total power consump-
tion in the length-L time period as

p =
∑L

l=1
‖W(l)‖2F︸ ︷︷ ︸

transmit power

+ λ1

∑L

l=1
‖a(l)‖0︸ ︷︷ ︸

maintenance power

+ λ2

∑L−1

l=1
‖a(l + 1)− a(l)‖0︸ ︷︷ ︸

switching power

(1)

where ‖ · ‖F is the Frobenius norm; λ1 > 0 can be interpreted
as the maintenance power to keep one BS active, and λ2 > 0
as the average switching power consumed when the BS-user
association changes.

Thus, the power minimization problem based on joint long-
term BS activation and beamforming is expressed as

min
{W(l),a(l)}Ll=1

p (P1)

s.t. SINRm(l) ,
|h†m(l)wm(l)|2

σ2 +
∑
n6=m |h

†
m(l)wn(l)|2

≥ γ, ∀m, l (2)

‖Wk(l)‖2F ≤ ak(l)P, ak(l) ∈ {0, 1}, ∀k, l (3)

where (2) is the QoS constraint based on SINR; (·)† denotes
Hermitian transpose; Wk(l) = [wk

1(l),wk
2(l), ...,wk

M (l)] ∈
CN×M denotes the kth row block of W(l), containing all the
transmit beamformers of BS k at timeslot l.

III. OFFLINE OPTIMIZATION

Clearly, all the CSIs, i.e., H(l) for l = 1, ..., L, are assumed
to be available a priori in (P1). It means that (P1) is an offline

optimization problem. Considering that (P1) is a challenging
nonlinear mixed-integer program, we try to find some efficient
approximate solution to it.

To this end, we first approximate l0-norm by l1-norm and
relax ak(l) as a continuous variable 0 ≤ ak(l) ≤ 1. Next, we
perform the SOCP reformulation [17] to the QoS constraint
(2), and then (P1) can be reformulated as

min
{W(l),a(l)}Ll=1

p̃ (P2)

s.t.

{√
1 + γ−1h†m(l)wm(l) ≥ ‖[h†m(l)W(l), σ]‖2,

Im{h†m(l)wm(l)} = 0, ∀m, l
(4)

‖Wk(l)‖2F ≤ ak(l)P, 0 ≤ ak(l) ≤ 1, ∀k, l (5)

where p̃ is defined as

p̃ =
L∑
l=1

(‖W(l)‖2F + λ1‖a(l)‖1) + λ2

L−1∑
l=1

‖a(l + 1)− a(l)‖1

(6)

Since (P2) is convex, it can be directly solved utilizing the
standard soft-solver, e.g., CVX [18].

IV. ONLINE OPTIMIZATION

Considering the casuality constraint on CSI, we design some
online algorithm for (P2). In particular, we successively solve
the joint BS activation and beamforming problems in different
timeslots, using the current CSI and the statistics of future CSI.

A. Online Optimization Framework

From (6), a(l) is coupled with a(l− 1) and a(l+ 1) in the
switching power terms. Hence in timeslot l, we optimize a(l)
jointly with the consideration of a(l−1) and a(l+1). However,
a(l + 1) is unknown in timeslot l, and should be determined
based on the CSI H(l+1). Since only the statistics of H(l+1)
are available, we integrate the expected power consumption in
timeslot (l+ 1) into the problem in timeslot l, and define the
objective pl as

pl = ‖W(l)‖2F + λ1‖a(l)‖1 + λ2‖a(l)− a(l − 1)‖1

+E

{
‖W(l + 1)‖2F + λ1‖a(l + 1)‖1
+ λ2‖a(l + 1)− a(l)‖1

}
(7)

where E{·} denotes expectation; {W(l),a(l)} depends on the
accurate value of H(l), while {W(l + 1),a(l + 1)} depends
on the statistics of H(l + 1).

This implies we need to solve a series of stochastic problems
in the online optimization. To avoid handling this challenging
problem directly, we employ the SAA method [13] to approx-
imate (7) as an average of S samples, i.e.,

p̂l = ‖W(l)‖2F + λ1‖a(l)‖1 + λ2‖a(l)− a(l − 1)‖1

+
1

S

S∑
s=1

{
‖Ŵ(l + 1, s)‖2F + λ1‖â(l + 1, s)‖1
+ λ2‖â(l + 1, s)− a(l)‖1

}
(8)
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where Ŵ(l+1, s) and â(l+1, s) are the transmit beamformers
and BS active indicators in timeslot (l+ 1), based on the sth
sample of H(l + 1), denoted by Ĥ(l + 1, s).

The stochastic problem in timeslot l can then be transformed
to a deterministic convex problem,

min
{W(l),a(l)}

{Ŵ(l+1,s),â(l+1,s)}Ss=1

p̂l (P3)

s.t. (4) and (5) satisfied for l,
√

1 + γ−1ĥ†m(l + 1, s)ŵm(l + 1, s)

≥ ‖[ĥ†m(l + 1, s)Ŵ(l + 1, s), σ]‖2,
Im{ĥ†m(l + 1, s)ŵm(l + 1, s)} = 0, ∀m, s
‖Ŵk(l + 1, s)‖2F ≤ âk(l + 1, s)P, ∀k, s
0 ≤ âk(l + 1, s) ≤ 1, ∀k, s

To summarize, we optimize the active BSs and the transmit
beamformers timeslot by timeslot in the online optimization
framework, i.e., we solve (P3) for l = 1, 2, ..., L, successively.
In timeslot l, we generate S samples of H(l + 1), namely,
{Ĥ(l+ 1, s)}Ss=1, according to channel distribution, and then
obtain {W(l),a(l)} by solving (P3) based on the current CSI
H(l), the previous active BSs a(l− 1) and the estimated CSI
samples {Ĥ(l + 1, s)}Ss=1.

However, the dimension and complexity are big issues in
solving (P3), since the sample size S cannot be too small in
order to approximate the expectation accurately. Then, to solve
(P3) efficiently, we further fit (P3) into the ADMM framework
to develop a low-complexity distributed algorithm.

B. ADMM-Based Algorithm for (P3)
To this end, we first define W̆(t), H̆(t), ă(t), λ̆0(t), λ̆1(t),

and λ̆2(t), t = 1, 2, ..., S+ 1, to simplify the notations, where
W̆(1) = W(l), H̆(1) = H(l), ă(1) = a(l), λ̆0(1) = 1,
λ̆1(1) = λ1; W̆(t) = Ŵ(l+1, t−1), H̆(t) = Ĥ(l+1, t−1),
ă(t) = â(l + 1, t − 1), λ̆0(t) = 1

S , λ̆1(t) = λ1

S for t =

2, ..., S+1; ă(S+2) = a(l−1); λ̆2(t) = λ2

S for t = 1, 2, ..., S,
and λ̆2(S + 1) = 1. Thus, (P3) can be equivalently rewritten
in a uniform form as

min
{W̆(t),ă(t)}S+1

t=1

p̂l (P4)

s.t. p̂l =
S+1∑
t=1

{
λ̆0(t)‖W̆(t)‖2F + λ̆1(t)‖ă(t)‖1
+ λ̆2(t)‖ă(t+ 1)− ă(1)‖1

}
{√

1 + γ−1h̆†m(t)w̆m(t) ≥ ‖[h̆†m(t)W̆(t), σ]‖2,
Im{h̆†m(t)w̆m(t)} = 0, ∀m, t

‖W̆k(t)‖2F ≤ ăk(t)P, 0 ≤ ăk(t) ≤ 1, ∀k, t

Next, we decouple the variables in (P4) by introducing

U(t) = W̆(t), F(t) = [H̆†(t)U(t), σ1] ∈ CM×(M+1) (9)

y = Qx ∈ R(S+1)K×1, x = [xTa ,a
T (l − 1)]T (10)

xa = ă , [ăT (1), ..., ăT (S + 1)]T ∈ R(S+1)K×1 (11)

Q =


−I, I, 0, · · · , 0
−I, 0, I, · · · , 0

...
...

...
. . .

...
−I, 0, 0, · · · , I

 ∈ R(S+1)K×(S+2)K (12)

where 1 is the M × 1 all-one vector; I and 0 are the K ×
K identity and all-zero matrices, respectively. Hence, (P4) is
equivalent to

min{
W̆,ă,F
U,xa,y

}
S+1∑
t=1

K∑
k=1

{
λ̆0(t)‖W̆k(t)‖2F + λ̆1(t)ăk(t)

+ λ̆2(t)|yk(t)|

}
(P5)

s.t.
√
γ−1fmm (t) ≥ ‖fm−m(t)‖2, Im{fmm (t)} = 0, ∀m, t

(13)

‖W̆k(t)‖2F ≤ ăk(t)P, 0 ≤ ăk(t) ≤ 1, ∀k, t (14)
(9) ∼ (12) satisfied.

where ăk(t) is the kth element of the K×1 vector ă(t), which
is the tth subvector of ă for t = 1, 2, ..., (S+1), see (11); yk(t)
is defined similarly. (13) is actually the QoS constraint, where
fm(t) = [h̆†m(t)U(t), σ] ∈ C1×(M+1) is the mth row vector
of F(t); fmm (t) = h̆†m(t)um(t) is the mth element of fm(t)
with um(t) being the mth column vector of U(t); fm−m(t) is
the remaining subvector after removing fmm (t), i.e., fm−m(t) =
[fm1 (t), ..., fmm−1(t), fmm+1(t), ..., fmM+1(t)] ∈ C1×M .

The partial augmented Lagrangian function of (P5) is given
by (15), where c > 0 is the penalty factor, and α, β, Φ and Ψ
are the associated Lagrangian multipliers. Dividing the vari-
ables W̆, ă, U, F, xa and y into two blocks of {W̆, ă,F,y}
and {U,xa}, we can employ the ADMM framework to solve
(P5) iteratively, with global convergence guarantee [14]. The
online ADMM algorithm is summarized in Table 1.

In the ADMM online algorithm, (P5) is solved by updating
{W̆, ă,F,y} and {U,xa} alternatively in each timeslot. More
interestingly, these two subproblems can be divided into small-
er problems further. Specifically, the problem of {W̆, ă,F,y}
can be divided into (S + 1)K problems of {W̆k(t), ăk(t)},
(S + 1)M problems of {fm(t)}, and (S + 1)K problems of
{yk(t)}; the problem of {U,xa} can be divided into (S+1)M
problems of {um(t)} and one problem of {xa}, k = 1, ...,K,
t = 1, ..., (S + 1), and m = 1, ...,M .

Next, we show the step by step computation of the ADMM
algorithm, with each step being solved in closed form.

Lc

(
W̆, ă,U,F,xa,y,α,β,Φ,Ψ

)
=
∑S+1

t=1

∑K

k=1

[
λ̆0(t)‖W̆k(t)‖2F + λ̆1(t)ăk(t) + λ̆2(t)|yk(t)|

]
+αT (y −Qx)

+
c

2
‖y −Qx‖22 + βT (xa − ă) +

c

2
‖xa − ă‖22 +

∑S+1

t=1

{
Re
[
Tr
(
Φ†(t)[U(t)− W̆(t)]

)]
+
c

2
‖U(t)− W̆(t)‖2F

}
+
∑S+1

t=1

{
Re
[
Tr
(
Ψ†(t)(F(t)− [H̆†(t)U(t), σ1])

)]
+
c

2
‖F(t)− [H̆†(t)U(t), σ1]‖2F

}
(15)
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Table 1: Online algorithm based on ADMM
(1) For l = 1, 2, ..., L, do
(2) Generate S CSI samples according to channel distribution;
(3) Solve (P5) utilizing ADMM: Repeat
(4) Update {W̆, ă,F,y} with other variables fixed;
(5) {W̆, ă,F,y} ← argmin{W̆,ă,F,y} Lc(·)
(6) s.t. (14)
(7) Update {U,xa} with other variables fixed;
(8) {U,xa} ← argmin{U,xa} Lc(·)
(9) s.t. (13)

(10) Update Lagrangian variables α, β, Φ and Ψ;
(11) Until some stopping criterion is satisfied;
(12) Output {W(l),a(l)};
(13) End

1) Updating {W̆, ă,F,y}: The problem of {W̆, ă,F,y}
is completely separable among {W̆k(t), ăk(t)}, {fm(t)} and
{yk(t)} for ∀ k, t,m. We can update them in parallel.
• The problem of {W̆k(t), ăk(t)} is a constrained quadratic

problem (QP) and expressed as

min
{W̆k(t),ăk(t)}


λ̆0(t)‖W̆k(t)‖2F − Re{Tr[(Φk(t))†W̆k(t)]}
+ c

2‖W̆
k(t)−Uk(t)‖2F

+ [λ̆1(t)− βk(t)]ăk(t) + c
2 [ăk(t)− xk(t)]2


s.t. ‖W̆k(t)‖2F ≤ ăk(t)P, 0 ≤ ăk(t) ≤ 1

where Φk(t) and Uk(t) ∈ CN×M are defined similarly as
W̆k(t), denoting the kth row blocks of Φ(t) and U(t); xk(t)
and βk(t) are similarly defined as ăk(t), denoting the elements
in xa and β corresponding to ăk(t).

Employing the Lagrangian method, we solve it as
W̆k(t) = cUk(t)+Φk(t)

c+2λ̆0(t)+2µk(t)

ăk(t) =
[
cxk(t)+µk(t)P+βk(t)−λ̆1(t)

c

]1
0

(16)

where µk(t) ≥ 0 is the Lagrangian multiplier of ‖W̆k(t)‖2F ≤
ăk(t)P and should be chosen to satisfy the KKT conditions
[17]; [ · ]10 denotes the projection onto the range of [0, 1].
• Let Y(t) , [H̆†(t)U(t), σ1] and Z(t) , cY(t)−Ψ(t),

with ym(t) and zm(t) being the mth row vectors of Y(t) and
Z(t), respectively. The problem of fm(t) is expressed as

min
fm(t)

Re{Tr[(ψm(t))†fm(t)]}+ c
2‖f

m(t)− ym(t)‖22

s.t.
√
γ−1fmm (t) ≥ ‖fm−m(t)‖2

The first-order optimality conditions for fm(t) are given by{
cfmm (t)− zmm(t) = τ

√
γ−1

zm−m(t)− cfm−m(t) ∈ τ∂‖fm−m(t)‖2
(17)

where zmm(t) and ψmm(t) are the mth elements of zm(t) and
ψm(t), respectively; zm−m(t) and ψm−m(t) are the remaining
subvectors after removing zmm(t) and ψmm(t) from zmm(t) and
ψmm(t), respectively; τ ≥ 0 is the Lagrangian multiplier with√
γ−1fmm (t) ≥ ‖fm−m(t)‖2; ∂‖fm−m(t)‖2 is the subgradient of

the nonsmooth function ‖fm−m(t)‖2, i.e.,

∂‖fm(t)‖2 ,

{
fm(t)
‖fm(t)‖2
{s | ‖s‖2 ≤ 1, s ∈ C1×(M+1)}

(18)

Then, the optimal solution to fm(t) is given by:
If ‖zm−m(t)‖2 ≤ −

√
γzmm(t), we have fm(t) = 0.

Else, we havefmm (t) =
τ
√
γ−1+zmm(t)

c

fm−m(t) =
‖zm

−m(t)‖2−τ
c · zm

−m(t)

‖zm
−m(t)‖2

(19)

where τ =
[γ‖zm

−m(t)‖2−
√
γzmm(t)]+

1+γ and [·]+ = max{0, ·}.
• To solve yk(t), let us define qk(t) as the [(t−1)K+k]th

row vector of Q. Thus qk(t)x is the element in Qx associated
with yk(t). Similarly, let αk(t) denote the [(t − 1)K + k]th
element of α. Then the problem of yk(t) is

min
yk(t)

λ̆2(t)|yk(t)|+ αk(t)yk(t) + c
2 [yk(t)− qk(t)x]2

Let ξ = cqk(t)x− αk(t), and then yk(t) can be solved as

yk(t) =

{
0, |ξ| ≤ λ̆2(t)

|ξ|−λ̆2(t)
c · ξ|ξ| , |ξ| > λ̆2(t)

(20)

2) Updating {U,xa}: Again, the problem of {U,xa} can
be solved by independently updating {um(t)} and {xa}.
• The problem of um(t) is an unconstrained QP, i.e.,

min
um(t)


Re{Tr[φ†m(t)um(t)]}+ c

2‖um(t)− w̆m(t)‖22
− Re{Tr[ψ†m(t)H̆(t)um(t)]}
+ c

2‖fm(t)− H̆(t)um(t)‖22


and can be easily solved as

um(t) = [H̆(t)H̆†(t) + I]−1

[
H̆(t)[fm(t) + c−1ψm(t)]

+ w̆m(t)− c−1φm(t)

]
(21)

where fm(t), ψm(t), w̆m(t) and φm(t) are defined similarly
as um(t), denoting the mth column vectors of F(t), Ψ(t),
W̆(t) and Φ(t), respectively. Notice that [H̆(t)H̆†(t) + I]−1

can be computed in advance, thereby eliminating the complex-
ity demanding matrix inverse operation in iterative process.
• Denoting Q = [Qa,Q−a] with Qa ∈ R(S+1)K×(S+1)K

and Q−a ∈ R(S+1)K×K , we express the problem of xa as,

min
xa

{
−αTQaxa + c

2‖y −Qaxa −Q−aa(l − 1)‖22
+ βTxa + c

2‖xa − ă‖22

}
Then, xa can be solved as

xa = [QT
aQa + I]−1

[
QT
a [y −Q−aa(l − 1) + c−1α]

+ (ă− c−1β)

]
(22)

Again, since [QT
aQa+I]−1 can be calculated in advance, there

is no matrix inverse operation in iterative process.
Remark 1 The online ADMM algorithm has very low com-
plexity. In each timeslot, the complexity of solving (P4) directly,
e.g., by the interior-point method, is about O((KNM)3(S +
1)3) per iteration, while the ADMM algorithm has a complex-
ity of O(KMN(M +KN)(S + 1) +K2(S + 1)2) only.
Remark 2 Due to the separable structure of the problem, the
ADMM algorithm can be implemented distributively, then its
efficiency will be further improved by exploiting the parallel
computation.
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V. SIMULATION AND CONCLUSION

We consider a MISO network with K = 10 BSs and M =
10 users, which are all randomly deployed in a hexagonal
cell with the distance between the adjacent corners being d =
1km. Each BS is equipped with N = 3 antennas. The power
budget for each BS is P = 1000, while the noise power is
σ2 = 1. The QoS requirement for the users is γ = 4.

We employ block fading channels. The channels in a fading
block (or a timeslot) are assumed constant, while the channels
in different blocks are generated according to Gaussian dis-
tribution. In particular, the elements of hkm(l) are generated
according to the distribution CN (0, [σkm(l)]2), where the vari-
ance is given by [σkm(l)]2 = ρkm(l) · [200/dkm(l)]3 with dkm(l)
the distance between BS k and user m at timeslot l, and ρkm(l)
the shadowing effect satisfying 10log10[ρkm(l)] ∼ N (0, 64).

We consider the data transmission within a time period of
L = 20 timeslots, and compare the following three algorithms:
1) the joint BS activation and beamforming without stability
control, which optimizes the active BSs and beamformers in
different timeslots independently; 2) the offline joint long-term
BS activation and beamforming algorithm, which solves (P2)
directly by CVX; 3) the ADMM online algorithm, i.e., the
proposed algorithm in Table 1.

The performance comparisons in terms of switching fre-
quency and power consumption are displayed in Fig. 1, where
the switching frequency is computed as the average switching
times per timeslot. The curve labelled with “S = 0” means we
only consider a(l − 1) and ignore a(l + 1) when optimizing
a(l). As expected, the offline algorithm performs best; the
algorithm without stability control performs worst; the online
algorithm has a performance in between. In general, switching
frequency decreases with λ2. In the online algorithm, larger
sample size S yields stabler BS-user association due to the
more accurate average approximation. In the case of small λ2,
switching power is negligible, thus the algorithms have similar
power consumption. As λ2 increases, switching power gradu-
ally dominates in the total power consumption. Then, obvious
advantage of long-term BS activation in power consumption
can be observed.

In summary, we develop a low-complexity online algorithm
for joint long-term BS activation and beamforming. It achieves
green communication by balancing the maintenance power, the
transmit power and the switching power effectively. Numerical
results have been provided to demonstrate its efficacy.
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