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Abstract—The conventional physical-layer (PHY) security ap-
proaches, e.g., transmit beamforming and artificial noise (AN)-
based design, may fail when the channels of legitimate user (LU)
and eavesdropper (Eve) are close correlated. Due to the highly
directional transmission feature of millimeter-wave (mmWave),
this may occur in mmWave transmissions as the transmitter, Eve
and LU are aligned in the same direction exactly. To handle the
PHY security problem with directionally-aligned LU and Eve,
we propose a novel frequency diverse array (FDA) beamforming
approach to differentiating the LU and Eve. By intentionally
introducing some frequency offsets across the antennas, the FDA
beamforming generates an angle-range dependent beampattern.
As a consequence, it can degrade the Eve’s reception and thus
achieve PHY security. In this paper, we maximize the secrecy rate
by jointly optimizing the frequency offsets and the beamformer.
This secrecy rate maximization (SRM) problem is hard to solve
due to the tightly coupled variables. Nevertheless, we show that it
can be reformulated into a form depending only on the frequency
offsets. Building upon this reformulation, we identify some cases
where the SRM problem can be optimally solved in closed form.
Numerical results demonstrate the efficacy of FDA beamforming
in achieving PHY security, even for aligned LU and Eve.

I. INTRODUCTION

As an efficient approach to secure wireless communications,
the physical-layer (PHY) security technique has been inten-
sively researched recently [1], [2]. One key performance mea-
sure of PHY security is secrecy rate, which is characterized by
the channel capacity difference of the legitimate user (LU) and
the eavesdropper (Eve). Popular PHY security approaches in-
clude transmit beamforming [2]–[4] and artificial-noise (AN)-
based designs [5]–[7], which explore certain channel statistical
independence to either enhance the LU’s reception or jam the
Eve’s reception.

However, these approaches may fail when the independence
assumption does not hold. For instance, there is an increasing
attention recently in using millimeter-wave (mmWave) bands
for the next generation wireless networks [8]. One important
feature of mmWave communications is the highly directional
transmission, especially in line-of-sight (LOS) scenarios [9].
Thus, if Eve is aligned with LU in the same transmit direction,
highly correlated channels may result. In the worst case, if the
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Eve’s channel vector is a scaled version of the LU’s, then the
transmit beamforming and AN-aided methods do not work.

To solve the PHY security problem for directionally-aligned
LU and Eve, approaches that are able to discriminate LU and
Eve with different range in the same transmit direction should
be sought. However, to the best of our knowledge, so far no
related research has been reported. Frequency diverse array
(FDA) is a potential solution to this problem. Basically, FDA
employs some small frequency offsets across the antenna array
to generate an angle-range dependent beampattern [10]. Cur-
rent research on FDA mainly focuses on analyzing the angle-
range dependent beampattern characteristics, and exploring its
application in radar and/or navigation systems [11]–[13]. An
orthogonal frequency division multiplexing (OFDM) secure
transmit scheme is designed in [14], based on FDA with some
given and fixed frequency offsets.

Departing from existing research, we propose to employ the
FDA technique to achieve PHY security for aligned LU and
Eve in highly directional transmissions. To handle such a PHY
security problem, we apply FDA’s range discrimination capa-
bility to enhance the LU’s reception and degrade the Eve’s. In
addition, to maximally explore the array’s potential, we further
integrate beamforming into FDA and finally develop a novel
FDA beamforming approach to addressing the directionally-
aligned PHY security problem.

Specifically, we maximize the secrecy rate via judiciously
designing the FDA beamforming parameters, i.e., the frequen-
cy offsets across the array and the transmit beamforming. The
secrecy rate maximization (SRM) problem is challenging due
to the nonconcave objective and the tightly coupled frequency-
offset variables and the beamforming variables. To handle this
problem, we first explore the SRM problem structure in order
to gain some insights to the FDA beamforming. After that, we
develop a two-stage algorithm for this SRM problem, which
optimizes the frequency offsets and the transmit beamforming
successively. The main difficulty lies in the frequency offsets
optimization, which is also a challenging nonconvex problem.
Interestingly, we identify some special cases where the prob-
lem can be optimally solved. In particular, linearly increasing
the frequency across the array attains the maximal secrecy rate.
Moreover, the maximal secrecy rate and the optimal frequency
offsets can both be computed in closed form.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Frequency Diverse Array

As shown in Fig. 1(a), we consider an LOS mmWave com-
munication system consisting of an M -antenna uniform linear
transmit array, a single-antenna LU, and a single-antenna Eve.
The array forwards confidential information to the LU, in the
presence of the Eve overhearing the transmission exactly in
the transmit path. To achieve some confidentiality, the FDA
beamforming approach is employed to provide PHY security.
As opposed to the conventional phase array, FDA introduces
small frequency offsets across the array antennas. As shown
in Fig. 1(b), the radiation frequency of the mth antenna is
fm = fc+∆fm for m = 1, 2, . . . ,M , with fc and ∆fm being
the carrier frequency and the frequency offsets, respectively.
We assume 0 ≤ ∆fm ≤ ∆F and ∆F � fc, where ∆F
is the maximal frequency offset. Let d denote the uniform
antenna spacing of the transmit array, which is maintained as
d = c/[2(fc + ∆F )] to avoid aliasing effects with c being the
speed of light.

Without loss of generality, we define the first antenna as the
origin of the (range, angle) coordinate system. Furthermore, to
concentrate on the range-dependent SRM problem, we ignore
the very few multi-path components (MPCs) in LOS mmWave
transmissions, since they were found to be attenuated by 20dB
compared to the LOS component [8]. For the user at (r, θ),
the LOS channel associated with the mth antenna is given by

hm(fm, r, θ) = a(r)e−j2π(fc+∆fm)[t− r−(m−1)d sin θ
c ] (1)

where a(r) denotes the signal attenuation factor at the range
of r. Notice that we have assumed far-field model to obtain
hm(fm, r, θ), i.e., parallel wavefront and a(rm) ' a(r). For
mmWave array transmission, the far-field and LOS assump-
tions can hold simultaneously due to the tiny array size, usually
in magnitude of millimeters.

To focus on the FDA characteristics, we temporarily ignore
the attenuation factor a(r) and assume an all-one beamformer.
Then, the FDA beampattern at (r, θ) is computed as

B(f , r, θ) =
∑M

m=1
hm(fm, r, θ)

= e−j2πfc(t−
r
c )

M∑
m=1

e−j2π{fc
(m−1)d sin θ

c +∆fm[t− r−(m−1)d sin θ
c ]}

= e−j2πfc(t−
r
c )
∑M

m=1
ej[Φ0,m(θ)+Φ1,m(∆fm,r,θ)] (2)

where Φ0,m(θ) = −2πfc
(m−1)d sin θ

c , Φ1,m(∆fm, r, θ) =

−2π∆fm[t− r−(m−1)d sin θ
c ], ∀m, and f = [f1, f2, ..., fM ].

Clearly, the phase terms {Φ1,m(∆fm, r, θ)}Mm=1 in (2) de-
pend on the frequency offsets {∆fm}Mm=1, the range r, and
the angle θ. By appropriately choosing {∆fm}Mm=1, FDA can
generate an angle-range dependent beampattern. To show this,
we plot the typical beampatterns of the conventional phase
array and FDA in Fig. 2. For the sake of simplicity, here we
have assumed linearly increasing frequency offsets in FDA,
i.e., ∆fm = (m − 1)∆f, ∀m. In the case of ∆f = 0,

Fig. 1. PHY security based on FDA beamforming for aligned LU and Eve.

Fig. 2. Typical beampatterns, i.e., |B(f , r, θ)|, of phase array and FDA for
M = 8, fc = 60GHz, and ∆f = 600KHz.

we have Φ1,m(∆fm, r, θ) = 0, ∀m, and then FDA reduces
to the conventional phase array as shown in Fig. 2(a). As a
contrast, we set ∆f = 10−5fc in Fig. 2(b) and an angle-range
dependent beampattern is thus activated owing to the nonzero
phase terms {Φ1,m(∆fm, r, θ)}Mm=1.

B. Problem Statement

We see from (2) that FDA has a deterministic beampattern
for some given f and time t. In general, there is no guarantee
that the LU and Eve are located at the beampattern peak and
valley simultaneously. Hence, to maximally explore the array’s
potentials in PHY security, we further integrate beamforming
into FDA, yielding a novel FDA beamforming strategy. In
particular, let w = [w1, w2, . . . , wM ]T ∈ CM×1 denote the
array transmit beamformer. The channel vector between the
transmit array and the user at (r, θ) is defined as h(f , r, θ) ,
[h1(f1, r, θ), h2(f2, r, θ), . . . , hM (fM , r, θ)]

T ∈ CM×1. The
signal-to-noise ratio (SNR) for the user is computed as

SNR(w, f , r, θ) = σ−2|w†h(f , r, θ)|2 (3)

where σ2 is the noise power and (·)† denotes the Hermitian
transpose.

Let (ru, θu) and (re, θe) denote the coordinates of the LU
and Eve, respectively. As shown in Fig. 1(a), we have θu =
θe = θ and ru > re. To simplify the notations, we use hu(f)
and he(f) to denote the associated channels, i.e., hu(f) ,
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h(f , ru, θu) and he(f) , h(f , re, θe). Hence, the achievable
LU rate and Eve rate are computed by

Ru(w, f) = log(1 + σ−2|w†hu(f)|2), (4)

Re(w, f) = log(1 + σ−2|w†he(f)|2). (5)

The FDA beamforming based SRM problem is expressed as

max
{f ,w}

Rs(w, f) , Ru(w, f)−Re(w, f) (P1)

s.t. ‖w‖22 ≤ P (6)
fc ≤ fm ≤ fc + ∆F, ∀m (7)

with P being the transmit power budget.

III. A TWO-STAGE ALGORITHM FOR SRM PROBLEM

The SRM problem (P1) is challenging due to the noncon-
cave objective and the tightly coupled variables f and w. In
this section, we first provide some insights to the solution of
(P1), and by leveraging these insights we then develop a low-
complexity two-stage algorithm to the SRM problem.

A. Some Insights to the Solution of (P1)

To obtain some insights into why FDA can provide PHY
security, even for directionally-aligned LU and Eve, let us first
fix the frequency variable f and briefly review the classical
PHY secrecy beamforming design [15]. Obviously, with fixed
f in (P1), the SRM problem is the same as the classical multi-
input, single-output, single-eavesdropper (MISOSE) secrecy
problem in [15], and the optimal beamformer can be computed
via generalized eigendecomposition. In particular,
Lemma 1. [15] Given f in (P1), let us denote

Hu(f) = h̃u(f)h̃†u(f), h̃u(f) = σ−1hu(f) (8)

He(f) = h̃e(f)h̃†e(f), h̃e(f) = σ−1he(f) (9)

H̃e(f) = He(f) + 1
P I (10)

Σ(f) = H̃
− 1

2
e (f)[Hu(f)−He(f)]H̃

− 1
2

e (f). (11)

Then, the optimal secrecy rate in (P1) is given by

R?s(f) = log(1 + [λΣ(f)]
+

), (12)

where [·]+ , max{·, 0} and λΣ(f) is the principle eigenvalue
of Σ(f). Moreover, the optimal beamformer w? is given by,

w?(f) = sgn{λΣ(f)} ·
√
P H̃

− 1
2

e (f)vΣ(f)

‖H̃
− 1

2
e (f)vΣ(f)‖2

(13)

where sgn{·} returns 1 if the argument is positive, and 0
otherwise; vΣ(f) is the principle eigenvector of Σ(f).

We should mention that the secrecy rate expression in (12)
slightly differs from the original form in [15]. One can easily
verify the equivalence between them. We adopt (12) here since
it severs our purpose better in the following development.

From (12), we see that the optimal secrecy rate depends on
the principle eigenvalue of Σ(f). Since Σ(f) is indefinite in
general, λΣ(f) can be either positive or negative. In particular,
let us assume ∆fm = 0 and fp = fc1 with 1 being the M ×1
all-one vector; i.e. the conventional phase array beamforming

case. For the aligned LU and Eve as shown in Fig. 1(a), we
have he(fp) = αhu(fp) with |α| = a(re)

a(ru) > 1. Thus, it can be
easily concluded that Hu(fp)−He(fp) and Σ(fp) are negative
semidefinite matrices, i.e., λΣ(fp) ≤ 0. As a consequence, the
conventional beamforming approach fails.

However, by introducing frequency offsets ∆fm across the
array antennas, in general we have he(f) 6= αhu(f) due to the
nonzero {Φ1,m(∆fm, r, θ)} in (2). That is, he(f) and hu(f)
are no longer linearly dependent and Hu(f)−He(f) � 0. In
consequence, Σ(f) may have a positive eigenvalue. Intuitively
speaking, the frequency offsets ∆fm play a role of rotating the
LU and Eve such that in the rotated space their channels are
decorrelated. This key observation not only explains why FDA
can provide PHY security even for aligned LU and Eve, it also
sheds some lights on how to design the frequency offsets.

According to Lemma 1 and the previous discussion, we see
that the SRM problem (P1) boils down to finding the optimal
frequency offsets ∆fm, ∀m, such that the principle eigenvalue
λΣ(f) is maximized, i.e.,

max
f

λΣ(f) (P2)

s.t. fc ≤ fm ≤ fc + ∆F, ∀m.

After finding the optimal f? for (P2), the optimal beamformer
w?(f?) can be computed in closed form based on (13). Thus,
in the subsequent development we focus on solving (P2).
Lemma 2. (P2) is equivalent to the following problem

min
f
|〈he(f), hu(f)〉|2 (P3)

s.t. fc ≤ fm ≤ fc + ∆F, ∀m

where 〈·, ·〉 denotes the inner product.
Proof : Due to space limitation, we only outline the proof here.
Basically, we decompose h̃u(f) as

h̃u(f) = β~he(f) + γ~he⊥(f) (14)

where ~he(f) and ~he⊥(f) are the unit vectors parallel and
orthogonal to h̃e(f), respectively; β and γ are scalar numbers
satisfying β2 + γ2 = ‖h̃u(f)‖22. Applying the matrix inverse
Lemma, we can express λΣ(f) as a function monotonically
decreasing with β2 for β2 ∈ [0, ‖h̃u(f)‖22]. Thus, maximizing
λΣ(f) is equivalent to minimizing β2. Since |〈he(f),hu(f)〉|2
= β2‖he(f)‖22 = Ma2(re) · β2, we establish the equivalence
between (P2) and (P3). �

Lemma 2 reveals that the optimal frequency offsets should
turn the channels of LU and Eve as orthogonal as possible. In
the ideal case, we should have 〈he(f), hu(f)〉 = 0. However,
due to the limited dynamic range of the frequency offsets, it
is in general not possible to make he(f) and hu(f) orthogonal
exactly. Next, we will identify some special cases, under which
the orthogonality can be guaranteed.

B. Closed-form Solution for (P3) under Some Special Cases

Intuitively, if there is sufficient flexibility to choose fm, i.e.,
∆F is large enough, we would expect that he(f) and hu(f)
can be turned orthogonal exactly. The following propositions
formalize this idea.
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Proposition 1. Suppose θu = θe and ∆F ≥ (M−1)c
M(ru−re) . Then,

(P3) can be optimally solved. Specifically, the optimal solution,
denoted by f? = [f?1 , f

?
2 , . . . , f

?
M ], is given by

f?m = fc + (m− 1)∆f?, and ∆f? = c
M(ru−re) , ∀ m. (15)

Moreover, at the optimal solution, hu(f?) and he(f
?) are

orthogonal, i.e., 〈he(f?),hu(f?)〉 = 0, and the optimal secrecy
rate is R?s(f

?) = log[1 + a2(ru)PM
σ2 ].

Proof : According to the definition of the directional channels
hu(f) and he(f), we have

〈he(f),hu(f)〉 = a(re)a(ru)
M∑
m=1

h∗m(fm, re, θ)hm(fm, ru, θ)

= a(re)a(ru)ej2πfc
(ru−re)

c

∑M

m=1
ej2π∆fm

(ru−re)
c (16)

For linearly increasing frequency offsets, i.e., ∆fm = (m −
1)∆f , m = 1, 2, ...,M , we have∑M

m=1
ej2π∆fm

ru−re
c =

∑M

m=1
ej2π(m−1)∆f

(ru−re)
c

=
sin[Mπ∆f(ru−re)

c ]
sin[π∆f(ru−re)

c ]
ejπ(M−1)∆f

(ru−re)
c (17)

Therefore, when

∆f? = kc
M(ru−re) , k = ±1, ± 2, ... (18)

we have 〈he(f?), hu(f?)〉 = 0 and thus the optimality of (P3)
is achieved. In practice, we use the smallest positive frequency
offset ∆f? = c

M(ru−re) .
The fact 〈he(f?), hu(f?)〉 = 0 indicates the orthogonality

between hu(f?) and he(f
?). Using this result, one can easily

verify that the maximum eigenvalue of Σ(f) is P‖h̃u(f?)‖22
or a2(ru)PM

σ2 . Equivalently, the corresponding optimal secrecy
rate is R?s(f

?) = log[1 + a2(ru)PM
σ2 ]. �

Remark 1. Under the conditions of Proposition 1, the maxi-
mum secrecy rate is log[1+ a2(ru)PM

σ2 ], which is the maximum
channel capacity of LU (without Eve). Therefore, the presence
of Eve does not degrade the rate performance between trans-
mitter and LU.

Remark 2. Given the maximum frequency offset range ∆F ,
the conditions in Proposition 1 impose a minimum distance
between LU and Eve, i.e., |ru − re| ≥ (M−1)c

M∆F , to achieve the
optimality.

Proposition 1 reveals an interesting result. For directionally
aligned LU and Eve (with sufficiently large ∆F ), linearly in-
creasing frequency offsets across the array is optimal. Actually,
the optimality of linear frequency offset can be generalized to
the case of θu 6= θe under some mild conditions.
Proposition 2. Suppose ∆fm � fc, ∀ m, d� |ru−re|, and
∆F ≥ (M − 1)∆f̃ , where ∆f̃ = kc+Mfcd(sin θu−sin θe)

M(ru−re) and
k is the smallest nonzero integer satisfying ∆f̃ > 0. Then,
linearly increasing frequency offset is optimal and the optimal
frequency offset is given by

f?m = fc + (m− 1)∆f? and ∆f? = ∆f̃ , ∀ m. (19)

Proof : We omit the details of proof due to space limitation. Ba-
sically, Proposition 2 can be proved similarly as Proposition 1
except that we ignore the phase term ∆fm(m−1)d(sin θu−sin θe)

c
in 〈he(f), hu(f)〉 due to the conditions of d� (ru− re) and
∆fm � fc. �

We remark the conditions of d� |ru− re| and ∆fm � fc
are mild and usually hold in practice in order to avoid aliasing
and decorrelation effects in FDA transmission.

We also remark that (15) is actually a special case of (19) as
θe = θu. Therefore, the FDA beamforming strategy possesses
discrimination capabilities in both direction and range.

C. Two-Stage Algorithm

We summarize the two-stage algorithm for the FDA beam-
forming based SRM problem in Table 1. In the first stage, we
optimize the frequency offsets across the antennas to rotate the
channels of LU and Eve as orthogonal as possible. Specifically,
for the identified special cases, the optimal frequency offsets
can be obtained; for the general case, however, we develop an
iterative algorithm utilizing the block successive upper-bound
minimization (BSUM) method to find a solution for frequency
offsets with stationary convergence guarantee [16]. This is not
covered in this paper due to space limitation. The details can
be found in the journal version [16] (submitted to IEEE TIFS).
In the second stage, the beamformer is optimized based on the
given frequency offsets according to (13).

Table 1: Two-stage Algorithm for SRM Problem
(1) Initialize the system parameters
(2) [Stage 1] Optimize the frequency increments
(3) Calculate ∆f̃ =

kc+Mfcd(sin θu−sin θe)
M(ru−re)

k is the smallest integer such that ∆f̃ > 0;
(4) if ∆F ≥ (M − 1)∆f̃ ,

output f?m = fc + (m− 1)∆f̃ , ∀m;
(5) else, find a stationary solution f?m, ∀m [16];
(6) [Stage 2] Optimize the beamformer

(7) w? = sgn{λΣ(f?)} ·
√
P H̃
−1/2
e (f?)vΣ(f?)

‖H̃−1/2
e (f?)vΣ(f?)‖2

,

(8) Output the secrecy rate R?s(f?) = log[1 + λΣ(f?)].

We should mention that the two-stage algorithm is done in
one shot and there is no alternating between the frequency and
beamformer optimization. With each step being solved analyt-
ically, the two-stage algorithm can be performed efficiently.

IV. SIMULATION AND CONCLUSION

We consider an LOS mmWave communication system op-
erating at fc = 60GHz. The system consists of an M -antenna
transmit array, a single-antenna LU and a single-antenna Eve.
We assume −100dBm receive noise power for LU and Eve,
i.e., 10 log(σ2) = −100dBm. The signal attenuation factor
a(r) is determined by the free-space path loss formula of radio
wave propagation, i.e.,

Lfs (dB) = −20 log[a(r)]

= 32.5 + 20 log[F (MHz)] + 20 log[r(Km)] (20)

where F ' fc is transmit frequency in megahertz (MHz), and
r is the range in kilometer (Km). We fix the LU’s coordinate
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Fig. 3. Secrecy rate comparison for different antenna numbers M at ru =
1000m, re = 500m, and θu = θe = 30o.

as (ru, θu) = (1000m, 30o), and change the other parameters
to test the algorithm’s performance in different aspects.

First, we set (re, θe) = (500m, 30o), ∆F = c
|ru−re| , and

compare the performances of the following 3 algorithms: (1)
the proposed FDA beamforming algorithm (cf. Table 1); (2)
the pure beamforming algorithm, which employs the optimal
beamformer of (13) with fixed f = fc1, i.e., ∆fm = 0, ∀ m;
(3) the pure FDA algorithm without beamforming, where the
array transmits with the fixed beamformer w =

√
P/M ·1, and

the stepped frequency offset ∆f is determined by performing
one-dimension search in the range of [0,∆F ].

The secrecy rate comparison for different antenna numbers
M is illustrated in Fig. 3, where we also plot the theoretical
secrecy rate upper bound log[1 + a2(ru)PM

σ2 ]. When the LU
and Eve are directionally aligned, the pure beamforming fails.
Performing frequency offsetting yields some positive secrecy
rate. However, there is no guarantee that the improved secrecy
rate can be achieved without optimizing the beamformer. The
proposed FDA beamforming algorithm always achieves the
secrecy rate upper bound by jointly optimizing the frequency
offsets and the transmit beamformer.

Next, we fix the Eve’s range as re = 500m and change its
angle θe. The secrecy rate comparison is illustrated in Fig. 4,
where we used the stepped frequency offset ∆f̃ in Proposition
2 in the FDA beamforming algorithm. As θe departs from θu,
the channels associated with LU and Eve may span different
subspaces. Therefore, the pure beamforming algorithm begins
to work gradually. The pure FDA algorithm behaves unstably,
depending on the FDA beampattern shape. The proposed FDA
beamforming algorithm exhibits a stable performance, which
achieves the secrecy rate bound regardless of θe.

In summary, an innovative FDA beamforming approach is
proposed for the directionally-aligned PHY security problem.
Specifically, we aim to maximize the secrecy rate by optimiz-
ing the frequency offsets and the transmit beamformer jointly.
After providing some insights to the FDA beamforming, we
design a two-stage algorithm to solve the challenging problem.
In our solution development, we further identify some special
cases, under which the SRM problem can be optimally solved
in closed form.

Fig. 4. Secrecy rate comparison for different Eve angles θe at ru = 1000m,
θu = 30o, re = 500m, and P = 10dBW.
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