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Abstract—Independent Vector Analysis is a powerful tool for
estimating the broadband acoustic transfer function between
multiple sources and the microphones in the frequency domain.
In this work, we consider an extended IVA model which adopts
the concept of pilot dependent signals. Without imposing any
constraint on the de-mixing system, pilot signals depending on
the target source are injected into the model enforcing the
permutation of outputs to be consistent over time. A neural
network trained on acoustic data and a lip motion detection
are jointly used to produce a multimodal pilot signal dependent
on the target source. It is shown through experimental results
that this structure allows the enhancement of a predefined target
source in very difficult and ambiguous scenarios.

Index Terms—independent vector analysis; source separation;
independent component analysis; speech enhancement; multi-
modal processing;

I. INTRODUCTION

Independent Vector Analysis (IVA) is a popular tool for

unsupervised multichannel source separation [1]. Its virtues

are related to the ability to avoid the permutation problem of

traditional narrow-band frequency-domain methods for source

separation [2], [3]. Differently from Independent Component

Analysis (ICA), IVA uses a multivariate source model in

order to jointly estimate the separated components in each

frequency. The multivariate model allows to bypass the need

for additional permutation solver algorithms, which often rely

on prior assumptions on the geometrical interpretation of the

mixing system [4], [5].

On-line implementations [6] and several other extensions

have been proposed in [7]. Nevertheless, despite its potential,

IVA is still not widely used in commercial applications such as

VoIP and ASR preprocessing. Indeed, the effectiveness of IVA

is intrinsically limited by the core paradigm of unsupervised

source separation: The nature of the sources of interest is not

explicitly defined. Therefore, although the internal permutation

problem is solved by the multivariate model, the external

order of the recovered sources cannot be guaranteed. The

same output can contain portions of different source signals at

different time instants, especially when the mixing conditions

are not static.

To overcome this issue, geometrical constraints have been

employed by imposing that a given output signal is associated

1The work of Zbyněk Koldovský was supported by The Czech Science
Foundation through Project No. 17-00902S

to a source having known angular position [8]. However, these

constraints cannot work well if the source and the noise are

located at similar angles or when the target source position

cannot be uniquely defined. Furthermore, these constraints

make IVA similar to adaptive beamforming [9] or to geo-

metrically constrained ICA [10], thus limiting the potential

of multivariate modeling [11].

To mitigate the mentioned IVA ambiguities but without

imposing any geometrical constraint, in [12] we proposed

to modify the multivariate model by injecting pilot signals

that are mutually dependent with the sources of interest. The

pilot signals were defined to be proportional to the posterior

probabilities to observe each source, given an observed wide-

band spatial or spectral feature. Inspired by [11], in this work

we further extend the model by considering posteriors derived

from multimodal signals:

• A neural network is trained using extensive prior acoustic

data such that it produces a pilot signal that contains

posteriors of the target source dominance in the observed

mixture.

• Another pilot signal is derived based on the lip detection

in a video recorded together with audio. This allows to

disambiguate the separation in cases where the target as

well as the interference are speech signals.

Experimental evaluations are carried out to confirm the effec-

tiveness of the supervised structure in separating speech from

noise sources, in difficult ambiguous scenarios, e.g. when the

target and the noise are both speech sources and are located

at a similar angular direction.

II. SUPERVISED IVA

N source signals are assumed to be recorded by an array

of M microphones. Let Sk
n and Xk

m be the STFT coefficients

obtained for the kth frequency bin, the nth source and the

mth mixture signal, respectively. Let Sk = [Sk
1 · · ·Sk

N ]T and

Xk = [Xk
1 · · ·Xk

M ]T . The mixing model is

Xk = HkSk +Nk, (1)

where Nk = [Nk
1 , · · · , N

k
M ]T is the vector of background

noise and interference signals, and Hk indicates the mixing

matrix for the kth frequency bin. Assuming N = M , the

objective of IVA is to estimate a set of de-mixing matrices
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Wk = {W k
nm}, k = 1, . . . ,K, where K is the number of

the frequency bins. The de-mixing matrices jointly recover

independent multidimensional sources Yn = [Y 1
n , · · · , Y

K
n ],

n = 1, . . . , N , where

Y k
n =

M∑

m=1

W k
nmXk

m, (2)

up to a scaling ambiguity, which can be subsequently resolved

by applying the Minimal Distortion Principle [13] to each

matrix Wk.

A typical way to model the sources is with a multivariate

spherical super-Gaussian distribution1 defined as [1]

an = [a1n, . . . , a
K
n ]T , f(an) = α exp


−

√√√√
K∑

k=1

|akn|
2


 . (3)

In the supervised IVA (S-IVA) [12], the multivariate model

(3) is extended by injecting additional “pilot” dependent

components. In this work we consider Q pilots for each source,

P 1
n , . . . , P

Q
n , which will be related to different modalities:

ãn = [a1n, . . . , a
K
n , γ1P

1
n , . . . , γqP

Q
n ],

f(ãn) = αexp


−

√√√√
K∑

k=1

|akn|
2 +

Q∑

q=1

γ2
q |P

q
n |2


 , (4)

where γq is an hyper-parameter controlling the influence of

each pilot. To obtain the update rule, the Maximum Likelihood

(ML) [1] approach is used by considering the cost function

L =

K∑

k=1

log | detWk|+

N∑

n=1

E[log f(Ỹn)], (5)

where Ỹn = [Y 1
n , . . . , Y

K
n , γ1P

1
n , . . . , γQP

Q
n ] denotes the

extended observation output vector. The expectation E[·] is

approximated with the time average over the frames. Then, by

taking the derivatives of (5) with respect to W k
nm and applying

the natural gradient modification to maximize (5), we obtain

the update rule

∆W k
nm = (Inm − E[φk(Yn)(Y

k
m)∗])W k

nm, (6)

Wk
new = Wk

old + η∆Wk,

where η is the adaptation rate, Inm indicates the nmth

element of the identity matrix, and the nonlinearities φk(·),
k = 1, . . . ,K are the score functions related to the density

(4), namely,

φk(Ỹn) =
Y k
n√∑K

j=1
|Y j

n |2 +
∑Q

q=1
γ2
q |P

q
n |2

. (7)

As the pilot components do not depend on W k
nm, the second

sum in (7) remains constant during the optimization. This way,

any IVA algorithm can be modified to its supervised version.

1This simplified multivariate model is obtained by assuming that all the
source components are zero mean and uncorrelated [1].

III. DEFINITION OF PILOT SIGNALS

The proposed method can be related to a previous work in

[14] where a user-guided source activity was used to supervise

the IVA adaptation. However, the formulation of S-IVA is far

more general as it can naturally include many supervising

modalities, through the definition of multiple pilot signals. In

this work, the pilot signals are derived from audio and video

information.

As we use the spherical Laplacian model in (4), the pilots

are assumed complex-valued zero-mean signals, uncorrelated

to the frequency bins but with a dependent time-varying

variance. Therefore, only the variance of the pilots has to be

defined. By indicating with aln and bln the posteriors of source

activity derived from the audio and video modalities (with

aln, b
l
n ∈ [0, 1]), the pilot signal variance is defined as

c(l) = E

[
1

N

∑

n

K∑

k=1

|Xk
n(l)|

2

]
, (8)

|P 1
n(l)|

2 = (aln)
2 × c(l), |P 2

n(l)|
2 = (bln)

2 × c(l),

where l is the time frame index, E[·] indicates the expectation,

which is approximated as a smooth time-average and the term

c(l) rescales the pilot to a dynamic range proportional to the

sum of the frequency components2.

A. Derivation of aln through an Acoustic Neural Network

A neural network (NN), trained to solve a regression

problem, is used to predict the source activity posteriors aln.

Namely, the network is trained to estimate the power ratio

between the true target speech and the noisy mixture. Any

machine learning method for regression can be used, such as

recurrent neural networks (see, e.g., [15]) but we found that

a naive multilayer feed forward NN, often named deep NN

(DNN), is sufficiently accurate to produce a useful prediction.

Let Skl
nd be the klth time-frequency representation of the dth

signal corresponding to the nth source, included in the training

set Dn. Example mixtures for the training are obtained as

Xkl
d =

∑

n

Skl
nd. (9)

The DCT and the logarithm is applied to |Xkl
d | to define the

transformed features X̂ k̂l
d = DCT[ln(|Xkl

d |)], where k̂ is the

index of the DCT coefficient. For the frame l, the input layer

is defined as

vl
d = [X̂l−1

d , X̂l
d, X̂

l+1

d ], (10)

where X̂l
d = [X̂1l

d , · · · , X̂K̂l
d ], K̂ < K (i.e. only the first

K̂ DCT coefficients are used). Two hidden layers of 256

neurons are used with the hyperbolic tangent as the activation

function. The softmax function is used in the output layer,

which has dimension N . Each output represents a dominance-

related feature for the nth source. For the dth mixture at the

2Here we assume that a proper care is adopted to scale the demixing
matrices in order to keep their norm within a limited range.
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Fig. 1. Examples of DNN posteriors prediction

lth frame, the training output labels are defined as

gl
d = [gl1d, · · · , g

l
Nd], glnd =

∑
k |S

kl
nd|

2

∑
ki |S

kl
id |

2
. (11)

In this work we focus on the scenario where the source of

interest is ”speech” while any other non-speech acoustic event

is considered as ”noise” (i.e. the noise can be considered

as composed by multiple sources). For the training of the

DNN, a large set of 100k mixtures was generated by randomly

combining noise examples with speech sentences in the TIMIT

database. Noises were collected from different sources and

the dataset was designed to balance the amount of noises

belonging to different categories. Noise signals selected did

not contain any speech, as the scope of the network is only to

discriminate between speech and noise. Two datasets of 10k

mixtures were generated for both cross-validation and testing.

After training, the output prediction for the nth source at

the lth frame, indicated as aln, is obtained through the feed-

forward propagation of the input vectors vl computed on the

test recordings.

Figure 1 shows an example of the DNN output for a given

test recording used in the experimental evaluation. We want

to highlight that, although in this work our target is a speech

source, S-IVA can also be applied to separate other type of

acoustic sources, e.g. musical sources, as long as the DNN can

discriminate them from their time-frequency representation.

B. Derivation of bln from lip-motion detection

In scenarios where the target source and the noise are

acoustically similar, additional modalities can be used to

disambiguate the definition of the target source. Here, we use

the video signal synced with the audio recording to extract the

lip motion of a main target speaker.

In order to track the movement of the speakers’ lips, a set

of 68 facial landmarks is extracted from each frame of the

video using the Ensemble of Regression Trees algorithm [16].

A subset of 8 landmarks describing the inner lip region then

defines a polygon whose area ri approximately corresponds

to the mouth opening in the ith frame. Then, the mean mi

and variance vi of 21 consecutive values ri−10, . . . , ri+10 are

computed and normalized to the range 〈0, 1〉. The posteriors

Fig. 2. Block diagram for the multimodal supervised S-IVA

bln are produced by a logistic regression classification of the

(mi, vi) feature pair for each video frame. To this end, all

frames of the video sequence were manually labeled as either

speech or non-speech and then split into train and validation

sets in a 70 : 30 ratio.

Since the audio and video stream were captured at different

rates, resampling was applied in order to produce a signal

consistent with the time-frequency representation used by IVA.

IV. EXPERIMENTAL EVALUATION

We conduct experiments with M = 2. An on-line S-IVA

implementation is realized through updating the de-mixing

matrices at each frame l according to

Yk(l) = Wk(l)Xk(l),

φk[Ỹn(l)] =
Y k
n (l)√∑K

j=1
|Y j

n (l)|2 +
∑Q

q=1
γ2
q |P

q
n(l)|2

, (12)

∆W k
nm(l) = (Inm − φk[Ỹn(l)]Y

k
m(l)∗)W k

nm(l),

Wk(l + 1) = Wk(l) + η∆Wk(l). (13)

The scaling normalization is applied to each bin to stabilize the

convergence as in [17]. The signal mixtures are transformed

in their corresponding time-frequency representation through

Short-time Fourier Transform with the Hanning window of

4096 points with 75% overlap. After separations, the images

of the target source at each microphone are recovered through

MDP, and signals are transformed back to the time-domain

using overlap-add. Two different experimental evaluations

were carried out:

• Test1: separation with pilots based on acoustic features

only;

• Test2: separation based on audio/video combined acoustic

features.

The block diagram of the supervised IVA is depicted in Fig. 2.

A. Test1: Separation of speech from noise

In this experiment, the video information was not available.

Thus, |P 2
n(l)|

2 in (13) was set to 0, for each n and l.

Recordings were made with two microphones with mutual

distance of 0.2 m. Signals were recorded at fs = 16 kHz in

a room of size 5 × 5 × 2.5 m with T60 = 300 ms. Partially

diffuse noise was simulated according to the 3Quest standard
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by playing multichannel signals through 4 loudspeakers con-

sisting of different types of real-world noise such as cafeteria,

road noise, train station, etc. The target speaker was recorded

at the distance of 2 m from the center of the microphones at

different angles. Note, this can be considered an underdeter-

mined scenario, as the noise was generated by playing partially

uncorrelated signals through multiple loudspeakers.

In order to validate the robustness of the proposed approach,

a dataset of 100 mixtures was generated by combining speech

signals (speakers at random angles) with randomly selected

noise examples (not included in the training set of the DNN

model). Performance were evaluated by computing both the

Noise-to-Speech ratio improvement (NSRi) at the noise output,

and the Signal-to-Distortion ratio improvement (SDRi) at the

speech output. Indeed, it should be noted that the scenario

is highly underdetermined and a complete good speech ex-

traction system should make use of both speech and noise

estimates [18][19]. Fig. 3 shows the performance averaged

over the test recordings, comparing standard IVA with S-IVA

with γ1 tuned for the best SDRi (γ1 = 24). It is seen that S-

IVA consistently improves the average performance compared

to standard IVA, i.e. when γ1 = 0, as the source order for IVA

is not guaranteed to be consistent over all test samples.

In a second experiment we evaluate the robustness of S-IVA

to an inaccuracy in the VAD. To simulate errors in the DNN

prediction, artificial noise was added as

ãln = (1− β)aln + β × rand(1) (14)

Fig. 4 shows the performance with varying β, demonstrating

the robustness of S-IVA to noisy pilot signals.

B. Test2: Separation of target speech from noise speech

In this experiment, we consider S-IVA endowed by a multi-

modal audio/video pilot signal. A target speaker was recorded

live in a front of a commercial laptop while simulating a
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Fig. 3. Performance of IVA (i.e. γ1 = 0) and S-IVA (tuned with γ1 = 24)
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Fig. 4. Robustness of S-IVA versus noise in the pilot signal.
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Fig. 5. SNRi performance for the multimodal S-IVA when the noise is
speech.
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Fig. 6. SDRi performance for the multimodal S-IVA when the noise is
speech.

VoIP conversation. Noise was generated by recording a TV,

located in the back of the laptop, at a distance of about 2

meters. Although the speaker position is known in advance,

it is worth noting that applying spatial constraints as in [8]

would not be effective in these conditions. In fact, the angular

positions of the target and of the noise sources are very close

to each other. For a more detailed analysis of this aspect, see

the experimental evaluation in [12].

A multimodal audio/video pilot signal is generated as in

(8) and the performance were evaluated by varying both the

parameter γ1 and γ2.

In a first experiment, we consider a recording where the TV

noise contains only spoken news. This scenario is very difficult

for the acoustic DNN as it cannot discriminate between the

target and noise speech. Figures 5 and 6 show the SNRi and

SDRi performance averaged over the target and noise source.

It is straightforward that the pilot based on the acoustic DNN

prediction is not reliable as by increasing γ1 the performance

degrades. On the other hand, the video information undoubtely

provides a robust supervision as both SDRi and SNRi increase

with γ2.

In a second experiment, we consider a recording where the

TV noise contained a mix of speech and music. From Figures

7 and 8 it can be seen that the acoustic DNN prediction is

more effective in these noise conditions as the presence of non-

speech related events, helps S-IVA to converge to the correct

source order. Interestingly, this experiment shows that the best

performance is obtained when combining both audio and video

information together. Indeed, while the lip-detection accuracy
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Fig. 8. SDRi performance for the multimodal S-IVA when the noise is a
mix of speech and music.

should not be sensitive to the presence of acoustic noise, other

disturbances could make it less reliable. For example, false

detections are produced by movements of the lips that happens

also when no speech is produced. This might also suggest

that more effective multimodal formulations can be defined

in alternative to (8), in order to better reflect the statistical

correlation of the errors produced by each modality.

V. CONCLUSIONS

In this work we have presented a supervised extension of

Independent Vector Analysis. A pilot signal is injected in the

multivariate model to steer the estimation toward the extraction

of a specific wanted source. A multimodal pilot signal was

defined combining both audio and video information. A deep

neural network was used to produce time-varying posteriors

of source dominance in order to discriminate speech from

acoustic noise events. A lip motion detection was used to

distinguish between the activity of the desired speaker from

that of interfering speech. It is shown that, without explicit

constraints to the demixing system, it is possible to have a

consistent enhancement of a specific target source in difficult

scenarios, such as in far-field, in underdetermined conditions

and when sources propagate from a similar direction.

It was shown that when S-IVA is supervised by the DNN-

based pilot signal, good performance can be obtained if the

noise does not contain any speech. On the other hand, when

the noise is a speech source, the performance obtained with

a video-based pilot signal clearly outperforms the acous-

tic supervision. Nevertheless, it was also observed that in

mixed noise conditions the best performance was obtained by

combining audio and video modalities together. This result

suggests that further work is required to design multimodal

formulations more effective than a naive weighted combination

of each single modality. Furthermore, future work might also

explore the use of EEG-based pilot signals, to realize effective

biofeedback source enhancement methods [20].
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