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Abstract—In this paper we propose to use an adaptive ensem-
ble learning framework with different levels of diversity to handle
streams of data in non-stationary scenarios in which concept
drifts are present. Our adaptive system consists of two ensembles,
each one with a different level of diversity (from high to low),
and, therefore, with different and complementary capabilities,
that are adaptively combined to obtain an overall system of
improved performance. In our approach, the ensemble members
are generalized CMACs, a linear-in-the-parameters network. The
ensemble of CMACs provides a reasonable trade-off between
expressive power, simplicity, and fast learning speed.

At the end of the paper, we provide a performance analysis of
the proposed learning framework on benchmark datasets with
concept drifts of different levels of severity and speed.

I. INTRODUCTION

In many signal and data processing applications, the dis-
tribution of data may change over time resulting a concept
drift [1]. The term real concept drift describes changes in the
conditional distribution of the output given the input, while
the distribution of the input may remain stable. A typical
example of the real concept drift is a personalized information
recommendation system: usually, the conditional distribution
of the interesting (and not interesting) documents for that user
may change, while the distribution of the incoming stream of
multimedia documents remains constant.

Apart from filtering for recommendation systems, concept
drift is a central problem in many dynamically changing and
non-stationary environments, including medicine [2], industry
[3], education [4], and business [5]. In these dynamic scenarios
the challenge is to process, in (near) real-time, large high-
speed data streams in order to adapt the learning model by
combining what has been learned in the old concept with the
fresh information corresponding to the new concept.

One of the most promising and effective approaches to ad-
dress these challenges is online ensemble learning. In ensem-
ble learning, a set of models are combined, usually according
to their expertise level regarding the current concept. Ensemble
online learning has been successfully used to improve the
accuracy of single learners in different applications such as
classification, regression, time series prediction, and filtering
[6].

Our approach is based on the use of diversity to improve the
ensemble learning when concept drifts are present. Diversity

reflects the degree of agreement between base learners in the
ensemble. When pairs of base learners tend to agree, the
ensemble is considered less diverse. When an ensemble is
highly diverse, a gradual change of concept does not necessary
imply that the base learners themselves are no longer useful. In
fact, as the base learners are “different”, it is possible that some
of them will already be useful for solving the new concept.
On the contrary, low diversity ensembles converge faster and
are usually the most accurate when the drift causes very big
changes and occurs suddenly (abrupt concept drift).

Since concept drifts can have different speeds and severities,
it seems reasonable to dinamically combine high and low
diversity ensembles to improve the adaption to the new con-
cept. Following this approach, we propose to use an adaptive
convex combination of two high and low diverse ensembles.
The obtained results show that the mixing parameter automat-
ically selects the best combination in different concept drift
scenarios.

II. CONCEPT DRIFT

From a formal point of view, a concept drift can be defined
as pt1(x, y) 6= pt0(x, y) where pti is the joint probability
distribution at time ti between the set of input variables x
and the target variable y. A change in the data distribution
may occur because there may be a change in:

• the prior probabilities of classes p(y),
• the class conditional probabilities p(x|y), and
• as a result, the posterior probabilities of classes p(y|x).

In particular, a real concept drift refers to changes in p(y|x),
which can happen either with or without a modification in the
input data distribution p(x).

Concept drifts can be described in terms of their severities
and speeds [7]. Severity is the amount of changes caused by a
new concept. Typically is expressed as the percentage of the
input space which has changed once the drift is completed.
Speed is the inverse of drifting time, and it can be defined
as the length of the time interval that the new concept needs
to completely replace the old one. According to the speed,
drifts can be categorized as either abrupt (high speed), when
the complete change occurs in just one time step, or gradual
(low speed), otherwise.
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III. A SOLUTION FOR CONCEPT DRIFT

In this paper, we propose a new approach consisting of an
adaptive convex combination of the low and high diversity
ensembles. The ensembles are combined in such a manner that
the advantages of both of them are kept: the rapid convergence
from the fast low diversity ensemble, and the reduced steady-
state error from the highly diverse one. In analogy of a
well-known neurological fact: human brains combine fast and
coarse reactions against abrupt changes in the environment,
with an early processing at the amygdala, and more elaborated
but slower responses taken in the neocortex at a conscious level
[8].

A. Ensembles for concept drift: local and diverse

The relationship among diversity, accuracy on the training
set, and generalization is complex, especially in online chang-
ing environments. In particular, the accuracy of ensembles
depends on the base learner, their diversity [9] and the level
of severity and speed of drift present in the dataset.

Regarding the base learners, an important problem is that the
data distribution may change only over a constrained region
of the input space (local concept drift). One example in the
real world is spam filtering, where only some particular types
of spam may change with time, while the others could remain
the same. In these cases, the accuracy of global models may
fall, even if they still could be good experts in the stable parts
of the data [2].

From earlier research work on concept drift [7], it has
been found that high diversity ensembles provide the best
generalization accuracy for drifts at low speed. For high
speed and high severity, it is a good strategy to use low
diversity ensembles. If the dataset contains drifts with low
severity (and high speed), high diversity ensembles would
have problems to converge to the new concept. However, low
diversity ensembles are able to converge rapidly to the new
one.

In our approach, the degree of diversity in an ensemble
is controlled with Online Bagging [10]. In Online Bagging,
training examples are sampled with replacement, so a base
learner can be updated k-times using a newly arrived instance.
The value of k is selected according to a Poisson distribution,
where k ∼ Poisson (λ). Different levels of diversity in an en-
semble are explicitly introduced by varying the λ: higher/lower
values of λ are associated with lower/higher diversity in an
ensemble of experts.

B. Convex combination

The basic idea behind convex combination is that two (or
more) adaptive models (or ensembles), with complementary
capabilities, adaptively combine their outputs by means of a
mixing parameter, to obtain an overall model of improved
performance:

y(t) = β(t)y1(t) + [1− β(t)]y2(t), (1)

where yi(t), i = 1, 2 are the outputs of the component models,
y(t) is the overall output, β(t) is a mixing parameter in the

range (0, 1), and t is the time index. If β(t) is appropriately
updated, it can be shown that the resulting model performs
as well as or better than the best individual component under
certain conditions [11]. The adaptation rule for β(t) is obtained
as follows:

a(t+ 1) = a(t) +
µa

p(t)
e(t)[e2(t)− e1(t)]λ(t)[1− λ(t)], (2)

where e(t) = d(t)−y(t) and ei(t) = d(t)−yi(t), i = 1,2, are
the errors of the overall model and the components, d(t) being
the desired signal, µa is a step-size parameter, p(t) = γp(t−
1) + (1− γ)[e2(t)− e1(t)]2 is a power normalizing sequence
that improves convergence [12], and a(t) is a parameter that
defines β(t) via a sigmoidal function as:

β(t) = sgm[a(t)] =
1

1 + e−a(t)
(3)

C. Base learner: Generalized CMAC

As it has been mentioned before, a proper selection of
the base learner may have a significant effect on the perfor-
mance of the combined ensembles. We propose to use the
Cerebellar Model Articulation Controller (CMAC) [13] as the
base learner for the following reasons. The CMAC is a very
simple linear-in-the-parameters network (see Figure 1.a), yet
with a high expressive capability, being able to approximate,
with a high degree of accuracy, a large number of functions
just by choosing a single parameter (the generalization factor)
[14]. Additionally, the CMAC uses a set of overlapping local
basis functions, which can provide good performance in some
practical applications where local concept drifts are present
(see Section III-A). Because of its fast online training and
simplicity, it is very useful in many real-time applications
such as control (its original purpose) [15], predistortion [16],
classification [17], and time series forecasting [18].

The CMAC network performs a local approximation of
functions by means of a weighted combination of overlapping
local basis functions. The position and size of CMAC’s
basis functions are predetermined at the initialization. Unlike
the conventional CMAC, the architecture of the Generalized
CMAC (GCMAC) [19] depends on a integer-valued general-
ization vector ρ = [ρ1, . . . , ρN ]

T ∈ NN that defines local basis
functions with different widths, and, therefore, with different
degrees of generalization, in each input.

The domains of the basis functions are defined by using ρmax

linear manifolds, or cosets, of ZN of the form RZN + kd,
k = 0, . . . , ρmax − 1, where RZN is the sublattice defined by{
x ∈ ZN/x = [q1ρ1, . . . , qNρN ]

T
}

, and d = [d1, . . . , dN ]
T ,

the displacement vector. The elements of the displacement
vector must be selected ensuring that d and ρ are coprimes,
in order to guarantee that the set of basis functions activated
by two adjacent input points differs at least in one element.
The linear manifolds divide the input space into overlapped
hyper-rectangular regions of size given by ρ, which constitute
the domains of the basis functions (see Figure 1.b).

Regarding the shape of the basis functions, the original Al-
bus’ CMAC uses constant functions, although other functions
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such as B-splines [20] and Gaussian functions [21] can be also
defined.

(a)

(b)

Fig. 1: The GCMAC network. (a) Three-layer architecture. (b)
Constant LBFs.

The output of the M basis functions can be arranged into an
activation vector, φ(x), that contains only ρmax nonzero values.
The GCMAC output is computed as yGCMAC = φ(x)Tw, where
w is the weight vector.

The weight vector w can be trained using a simple first-
order learning rule in which the error is divided in equal parts
among the ρmax functions participating in the output (Albus’
rule). A faster rule is to use a variable learning step that
depends on the mean power of the association vector:

w ← w +
µG

D
(y − yGCMAC)Cφ(x), (4)

where D = φ(x)TCφ(x), and C is a diagonal matrix with
entries equal to the mean power of vector φ(x).

D. Our proposal

Our proposal is depicted in Figure 2. We have included
time-delayed connections (a Shift Register) for sequential
information processing. It is important to note that our scheme
does not include an explicit (and possibly complex) concept
drift detection method. Instead, the handling of the non-
stationary behavior is done by the (more simple) convex
combination of ensembles.

Fig. 2: Convex combination of low/high diversity ensembles
using GCMAC as base learner.

IV. RESULTS

In order to analyze the effect of diversity in the presence
of concept drift, we have used the artificial dataset “Circle”,
defined as: (x1 − a)2 + (x2 − b)2 ≷ r2 (a = b = 0.5;
x ∈ [0, 1]2) [7]. To simulate the drift, the circle radius r
changes from r = 0.2 to 0.3 (low severity), or to r = 0.5
(high severity). In the old concept, L = 2000 samples have
been generated: those falling inside the circle are labelled as
+1 (outside, −1; balanced samples); after the drift, labels are
swapped, and samples inside the circle are labelled as −1. In
high speed drifts, the concept changes abruptly in t = L+ 1;
in low speed drifts, the gradual change from the old to the new
concept lasts 1000 samples (see Figure 3). Finally, to simulate
noise, 5 % of samples have been wrongly labelled.
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Fig. 3: Concept drift using the “Circle” dataset (a = b = 0.5).
The drift from the old concept (r = 0.2) to the new concept
(r = 0.3) takes place at Low Speed.

The performance is analyzed in terms of the prequential
accuracy, acc(t), defined as the average accuracy computed
from each example presented for training, prior to the example
being learned. In order to analyze the behavior of the ensem-
bles before and after the beginning of a drift, the accuracy is
reset when the drift starts (t = L + 1). The depicted values
of prequential accuracy have been obtained after a total of 30
independent runs.

The Poisson(λ) distribution for a low diversity ensemble
uses λLD = 1, and the value for the high diversity ensemble
is λHD = 0.05.
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In the experiments we have used 25 GCMAC networks as
the base learners for each ensemble. The input space was
discretized with an 8-bit quantizer. A generalization factor
ρLD = 255 was used in the low diversity ensemble, and
ρHD = 32 in the high diversity one (see Figure 2). A step
size µG = 1 was used in the learning rule (4).

Finally, in the convex combination we have used a step size
µa = 1 and a forgetting factor γ = 0.9 (see Equation (2)).

The evolution of the prequential accuracy of the low and
high diversity ensembles, the convex combination, and the
single base learner for a High Speed Concept Drift is depicted
in Figure 4.
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Fig. 4: Evolution of the prequential accuracy of the low and
high diversity ensembles, the convex combination, and the
single base learner for a High Speed concept drift. (a) High
Severity. (b) Low Severity

From Figure 4.a (High Severity), some conclusions may
be drawn. The first one is the capacity of an ensemble to
improve upon the accuracy of the base learner. Second, the
low diversity ensemble has a faster reaction time than the high
diversity ensemble. And third, our convex combination clearly
outperforms the individual ensembles after the drift.

A similar behavior is observed for Low Severity abrupt
drifts (see Figure 4.b). However, the performance of the

high diversity ensemble is now very poor (close to random
guessing). A possible explanation is that the high diversity
ensemble retains the learned old concept for a long time
because it is unable to detect a slight concept drift.

These behaviors are implicitly considered in the convex
combination of ensembles. Analyzing the evolution of the
mixing parameter β(t) (see Figure 5), it is observed that
the Low Diversity ensemble is preferred for a long time
(β(t) > 1

2 ) when the severity of the concept drift is low.
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Fig. 5: Evolution of β(t) for a High Speed concept drift.

The prequential accuracy for Low Speed drifts is depicted
in Figure 6, and the evolution of the mixing parameter β(t)
is depicted in Figure 7.

The analysis of this results leads to the following conclu-
sions. Independently of the severity of the gradual drift, the
High Diversity ensemble is the best option along its duration
(β(t) � 1

2 , for 2000 . t . 3000). An interpretation of this
could be that the more complex (and richer) architecture of
the High Diversity ensemble is able to use the information
learned in the old concept at the same time that learns the
new concept. Once the gradual drift is completed, the choice
of one ensemble or the other depends on the severity of the
drift: after a high severity drift, the convex combination prefers
the high diversity ensemble, and the low diversity ensemble,
otherwise.

V. CONCLUSIONS

In this paper we have proposed an adaptive ensemble
learning framework with different levels of diversity to handle
streams of data in dynamic non-stationary scenarios where
concept drifts are present. Our adaptive system consists of
two ensembles, each one with different level of diversity (from
high to low), and, therefore, with different and complemen-
tary capabilities, that are adaptatively combined to obtain an
overall system of improved performance. We have used the
generalized CMAC as the base learner due to its fast learning
speed and good generalization performance.

Although more research is needed (to analyze the behav-
ior of new adaptive convex combination strategies on real
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Fig. 6: Evolution of the prequential accuracy for a Low Speed
concept drift. (a) High Severity. (b) Low Severity
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Fig. 7: Evolution of β(t) for a Low Speed concept drift.

datasets), the obtained results show that the convex combi-
nation of high and low diversity ensembles achieves good
performance, in terms of accuracy and tracking capabilities,
on datasets with concept drifts.
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