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Abstract—The short-time Fourier transform is a prevalent
method used to analyze the frequency composition of a signal
as a function of time. In order to achieve high resolution in
frequency a large sliding window needs to be applied which
degrades the time resolution. This paper proposes the adoption
of sparse reconstruction as a mean to extrapolate supplementary
values in time domain for each segment. Over short durations a
signal’s frequency content is likely to contain a limited number
of effective frequencies and a sparse regeneration approach can
be advantageous as an extrapolating mechanism. An enlarged
number of samples can thus yield spectrograms with high
frequency resolution. The capabilities of the proposed techniques
are demonstrated on several synthetic and real data signals.

Index Terms—spectrogram, short-time Fourier transform,
time-frequency analysis, super-resolution, signal extrapolation

I. INTRODUCTION

The short-time Fourier transform (STFT) is one of the clas-
sical and widely used techniques to determine the frequency
content of a signal over shorter time intervals. A limited
section of a signal is extracted through the means of a sliding
window, multiplied by a tapering function and transformed to
the Fourier domain. Plotting the magnitude of the transform
as a function of time provides a spectrogram on how the
frequencies of the signal vary as a function of time [1]. An
important aspect in this regard is the frequency resolution of
the spectrogram which in essence is determined by the number
of data samples available for the transform. Employing a larger
window with a larger set of samples increases the frequency
resolution at the expense of poorer time localization. Obtaining
high accuracy in time as well as high frequency resolution
is therefore generally contradictory. Nevertheless, there have
been several approaches presented in the literature on how to
improve upon the traditional STFT by using various alternative
time-frequency representations and transformations [2]-[6].

The last couple of years have also seen an increased focus
on compressed sensing and sparse reconstruction techniques
based on the L;-norm optimization [7], [8]. These methods
have typically been developed for use in various settings to
reconstruct a signal or image where the data acquisition may
have been carried out in a compressed or irregular manner.
Under certain conditions a sparse reconstruction approach can
guarantee perfect recovery even when parts of data may not
be available. In many applications, such as audio recordings,
sampling and data collection in itself is not really a bottleneck
issue rather detailed and accurate signal analysis is the more
prominent aspect.
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In this paper we propose an alternative utilization of sparse
reconstruction techniques for increasing the frequency res-
olution of the STFT. The Fourier transform with a sliding
window is retained as the main transformation component and
the frequency resolution is increased by a sparse extrapolation
process in time domain. This provides an alternative resolu-
tion enhancement strategy compared to previously proposed
approaches.

The motivation for selecting sparse reconstruction in this
context comes from the fact that a frequency transform over
a restricted number of samples is likely to contain a limited
number of preeminent frequency elements and can thus be
considered to be sufficiently sparse. Sparse reconstruction
procedures may therefore be employed to extrapolate the
dominant signal oscillations appropriately and narrow them
down more precisely in Fourier domain. Another incentive for
extrapolation comes from the fact that applying a windowing
function weights down data entries at the beginning and end
of the sequence. In an enlarged extrapolated data set the
extrapolated values are the ones who are heavily scaled down
while the potential of the original data can be utilized fully.
The idea of extrapolating each segmented signal to increase
its time-frequency resolution has also been proposed earlier
in e.g. [2], [9] using more standard signal modeling and
weighted norm approaches. Some recent applications of sparse
reconstruction techniques with inter- and extrapolations have
been applied in phase array antennas [10] and in multifunction
radar [11] settings to compensate for data gaps and improve
overall system performance.

A particular feature often linked with sparse reconstruction
is that the obtained results are indeed sparse, i.e. contain
significant number of exact zero values. In order to regen-
erate and retain the original properties of the spectrogram
we additionally propose a merger of the extrapolated data
with real data. This has the benefit that noise, less prevalent
signal frequencies and other inaccuracies are fully preserved.
Several simulated and real world examples are examined to
demonstrate the principles introduced in this paper.

II. SPECTROGRAM MODEL

We consider a discrete-time signal p(t) € CTX! t =
1,...,T sampled at regular intervals for which a time-
frequency representation through STFT is desired. For this, a
shorter segment x(f), € CVN*' t =1, ..., N with N samples
is extracted from within p(¢). It is assumed that k = 1,..., K
and K denotes the total number of segmented intervals; the

1175



2017 25th European Signal Processing Conference (EUSIPCO)

exact value of K depending upon the lengths of the signal
and the segmented window alongside the amount of overlap
between two consecutive sections. In the reminder of the text
we use X, € CNV*! to denote x(t);, for any particular value
of k.

For further processing xj, is typically multiplied element-
wise, designated by ®, with a windowing function w € CV*!
and afterwards it may potentially also be zero-padded. Per-
forming a Fourier transform results in s(w)y, expressed as:

sy = F(w©x,) € CV*L (1)

F is the discrete Fourier matrix of size N x N, F,, , =
exp(—2mjmn/N). The above process is independent across
each time segment and may be executed through an FFT to
make it computationally more efficient. Stacking together all
segments we arrive to the STFT matrix:

S(k,w) = [s1 ... sg] € CN*K, (2)

A. Sparse Extrapolation

Assuming each segmented spectrum sj contains relative
limited number of active frequencies, or is sufficiently sparse
within a tolerance level, one can attempt to extrapolate it in
time domain. An extrapolation process constructs additional
samples from available data and in this proposition the proce-
dure needs to materialize with respect to the main dominating
frequencies as only the extrapolation of these frequencies can
force the spectrum to remain sparse. The optimal solution will
thus be the one that maximizes sparsity in frequency while still
preserving, to a certain extent, the original signal’s integrity,
as specified later.

The new regenerated profile for a given segment is specified
by X € CL*! and the relationship between time domain
and frequency domain is as previously governed by

s =F(Wwox,) eChx! (3)

where F is now an L x L Fourier matrix and w € CL*! js
the windowing function. L indicates the length of the entire
extrapolated segment, where L > N and is chosen freely. For
simplicity we presume

Q@=L-N “4)

is an even number and expresses the total number of ex-
trapolated samples. From the original segment, )/2 number
of samples are therefore extrapolated on both ends in time
domain.

For the sparse reconstruction process we furthermore define
a binary selection matrix M € BV*% by taking an L x L
identity matrix Iy 7, and removing the first /2 and the last
/2 rows. This eliminates the respective rows for which no
samples are available. The purpose of the selection matrix is
to extract values from positions that contain data.

The extrapolated and regenerated solution should have com-
parable values to those measured at their respective placements
which can be expressed as

M)A(k = Xk- (5)
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With windowing functions incorporated the requirement be-
comes

M(w © xi) = (MW) © X, (6)
or equivalently
MFFWox;) = (MWw)Oxg
Gs, = WO, (7

where w = Mw € CV*! is the truncated tapering function
and G is the partial inverse Fourier matrix G = MF* ¢
CN*L with F* e CL*L being the inverse Fourier matrix.

As the STFT can be presumed to be reasonably sparse
for each segment, the optimal sparse solution §; must be
found with respect to frequency domain. The extrapolating
regenerating process can under convex relaxation therefore be
formulated as

§, = argmin ||$k||1 (3)
s.t. |‘Gék7W®Xk‘|2§€ (9)
where ¢ is acceptable error and || ||; indicates the L; norm.

The constrain (9) is a relaxed version of (7) in order to
accommodate for the presence of noise and other inaccuracies.
(8) and (9) together form a standard sparse reconstruction
problem where the selection of ¢ determines the nature of
the solution. Generally, the tolerance level may be set relative
to the average noise floor. A larger value can provide more
flexibility in determining a sparse solution though it may then
also deviate somewhat from the measured data set. On the
other hand, a tighter constrain on ¢ forces the solution to be
more closer to the original data which may retain peculiar
properties including for example noise.

Stacking together the optimal solutions from each segment
provides the regenerated STFT matrix with a greater number
of bins in frequency:

S(k,w) = [81 ... $x] € CE*K, (10)

We remark that partial Fourier matrices have been well studied
in the literature and have been shown to provide capable
outcomes in sparse reconstruction applications where also
several efficient algorithms have also been proposed on solving
these types of problems [7], [12], [13]

B. Merged Extrapolation

For general purpose signal analysis a possible drawback
with the extrapolated solution (10) is the inherit sparsity. By
selecting an appropriate value for £ noise and other inaccura-
cies can be eliminated from the sparse solution which is also
important as an extrapolation of e.g. noise is typically not
desired. Nevertheless, for many algorithms and detailed spec-
trogram analysis the more subtle fluctuations and alterations
within the original noisy signal may still remain of interest.
A strategy to alleviate these issues is to first determine an
extrapolated solution and then utilize the obtained extrapolated
samples only for extensional purposes in time domain where
the original signal data remains preserved unaltered in the
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Fig. 1: Audio signal: standard spectrogram, N = 16

middle. This can be accomplished by transforming §; back
to time domain

(WO %(t)) = F* & (a1

which is then merged with the original data incorporating the
tapering function

(WO x(t)r) =

{ wWoOx(t—0Q/2)k Q2<t<L-Q/2

w O x(t)k, otherwise

(12)

where ¢ now runs through ¢ = 1,...,L. The time domain
solution accordingly contains the original signal, windowed
correspondingly, in the center. A Fourier transform

s =F (WO x(t)) (13)

across all segments yields the final merged spectrogram:

S(k,w) = [51 ... CLXK,

Sk] € (14)

The merged spectrogram permits usage of standard filtering,
detection and classification algorithms who may otherwise
require modifications for sparse spectrograms.

III. RESULTS AND DISCUSSION
A. Audio test signal

To demonstrate the principles of the proposed sparse extrap-
olation approach, a clean audio recording of a male voice at 8
kHz was taken advantage from the freely available NOIZEUS
database [14]. The samples were first run through the standard
STFT with a window length of 16 samples and a hop size of
only 1 sample between segments. This provides a versatile and
large trial set of over 22500 STFT time bins. Each segment
was tapered with the Hanning window.

The standard spectrogram of the original signal can be seen
in figure 1 which was also zero-padded by 48 to bring the
number of bins in frequency to 64. The limitations of a small
window size are nevertheless very noticeable as the resolution
in frequency is not sufficient to clearly separate the various
components of the audio signal without a lot of smearing.

The spectrogram obtained through the sparse solutions, as
per the procedure described in the previous section, with an
extrapolation of 24 samples on each side is depicted in figure
2. The sparse reconstruction process was carried out using the
SPGLI [13] algorithm and with £ = 0.05||Wxy|| to sanction a
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. 3: Extrapolated merged spectrogram N = 16, L = 64
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Fig. 4: Audio signal: standard spectrogram, N = 64

five percent norm deviation from the original extracted signal
for each segment. All other parameters, including the length
of the sliding window, are kept identical to those of the
standard spectrogram. As one can observe in the figure the
major features of the voice sample stand out and are now
much more clearly located at specific frequency bands. The
solution is also sufficiently sparse for association and audio
analysis purposes. Note that extrapolation process contributes
with additional integration gain and the power levels are given
relative to the standard spectrogram. The merged solution
combining real and extrapolated data is given in figure 3 which
is now no longer sparse but due to extra samples offers a
significant improvement over the original spectrogram in terms
of frequency resolution. The convenience of having augmented
extrapolated samples is substantial with more than 10dB.
Audio signals are commonly analyzed with various win-
dowing lengths. The second case therefore inspects a window
length of 64 pulses, still with a hop of 1 sample. 64 samples
were extrapolated on each side for each segment by the
sparse reconstructing process. The original plot, zero-padded
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Fig. 7: ARMA extrapolated spectrogram, N = 64, L = 192

to length of 192 samples, can be seen in figure 4. This
resembles the previously extrapolated figure 3 where many
of the same frequencies stand out. The sparse extrapolation
process (figure 5) correctly splits the various bands and a full
discrimination is now possible. This remains the case even
for the merged solution of figure 6. Subjectively, listening to
the sparse or the merged sample sounds very similar to the
original recording.

To compare the outcome against more traditional meth-
ods, each segment of the signal was extrapolated, on both
ends, through two independent ARMA(10,40) processes using
Prony’s method [1]. A total of 64 additional samples were
generated on each side, and the final spectrogram can be seen
in figure 7. It can be observed that the model has not been able
to divide the major frequency bands as successfully and there
is marked leakage. For comparison, the standard spectrogram
with 192 sliding window samples can be seen in figure 8.

ISBN 978-0-9928626-7-1 © EURASIP 2017

Original

Fig. 8: Audio signal: standard spectrogram, N = 192

B. Noisy phonocardiogram signal

In order to investigate the performance under more de-
manding circumstances, a highly noisy simulation of a fetal
phonocardiogram (PCG) recording sampled at 1 kHz with an
SNR of -15.1dB was put to use [15]. The main objective
to demonstrate that sparse reconstruction can also be highly
useful in challenging noisy conditions where traditional ex-
trapolation breaks down rapidly.

The original spectrogram with sliding Hanning window of
24 samples with a hop of 8 samples can be depicted in figure
9. The more abnormal properties as well as the low frequency
heartbeats appear in the spectrogram though the latter is more
easily observable in the magnified portion of the plot on the
right side. The noise is otherwise quite dominating and the
sparse reconstruction process must therefore take that into
account as a highly sparse solution on it’s own may not
be able to capture all activity. A possible choice for € can
therefore be ¢ = 0.5||Wx|| to allow for an up to fifty percent
norm disparity from each of the original segmented signals.
The result of sparse extrapolation with this selection can be
seen in figure 10 and the merged solution in figure 11. The
outcome is not sparse as some noise is retained, except at
positions enclosing high frequency anomalies. Otherwise, the
main heart beating frequencies have clearly been enhanced
and narrowed down in frequency. This is further evident in
the hybrid spectrogram where the frequency spread is much
cramped.

To realize more sparser images the acceptable error can
be raised, albeit that may come at the expense of somewhat
reduced sensitivity to the subordinate frequencies due to the
very low SNR. Figures 12 and 13 illustrate this in practice
where ¢ = 0.95||Wxy|| is applied. The main features of the
heart beats and the abnormalities are nevertheless preserved
and stand out easily distinguishable even if the intensity levels
are reduced.

Overall, the proposed sparse extrapolation and merger tech-
niques have successfully managed to generate spectrograms
with high frequency resolution using sliding window of the
same length.

IV. CONCLUSION

The short-time Fourier transform is an important tool in
many signal processing applications and improving the time
and frequency localization is of great interest. In this paper
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