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Abstract—This paper proposes a subspace based near field
targets localization method with bistatic MIMO system con-
sisting of uniform linear transmitting and receiving arrays.
The proposed method uses the spherical wavefront based exact
model to avoid the systematic error introduced by the Fresnel
approximation, which is usually made on the wavefront to
simplify the signal model for a near field source in the existing
literature on near field sources localization. By avoiding this
approximation, we have significantly improved the estimation
accuracy. Additionally, unlike most of the existing near field
sources localization techniques, the proposed method works for
the array with interelement spacing greater than a quarter of
the carrier wavelength.

I. INTRODUCTION

MIMO system has grabbed a lot of attention in radar appli-
cations. Based on the location of the transmitting and receiving
antennas with respect to a target, MIMO system can be clas-
sified as colocated or distributed [1], [2]. In case of colocated
MIMO system, the consecutive sensors in the transmitting and
receiving arrays are separated by a distance less than or equal
to one half of the carrier wavelength, however, the arrays
may be located significantly apart. When the transmitting and
receiving arrays are in the same place, the system is monostatic
MIMO, and when they are in separate places, the system is
bistatic MIMO. A large number of existing targets localization
methods using bistatic MIMO system have been proposed for
far field targets as compared to that for the near field targets
[3]-[7]. Since a bistatic MIMO radar has colocated antennas,
it provides high parameters identifiability, improved angular
resolution, and transmit beampattern flexibility [8]-[10].

A point source emits spherical wavefront which leads to
a nonlinear signal model. To simplify the signal model, the
spherical wavefront is approximated as planar in far field
situation and quadric in near field situation by using the first
order and second order Taylor’s expansions respectively [11].
However, this Fresnel approximation introduces systematic
bias in the estimates of the location parameters like range
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and directional angle. This bias becomes significant when
the targets are close to the array. [12] shows the position
estimation error in the near field region of a bistatic MIMO
system due to the Fresnel approximation. From the perspective
of precision, the error should be avoided if possible. There
can be two approaches to avoid the error due to the Fresnel
approximation. One approach can be to use a method which
can directly deal with the spherical wavefront based exact
model such as [13]. Other approach can be to mitigate the
estimation error by a correction technique [14].

This paper proposes a novel method to locate near field
targets using bistatic MIMO system with the exact wavefront
model. The proposed method is inspired by the method in [7]
which is proposed for the approximated model. We improve
the method proposed in [7] by fully exploiting all the available
information and adapting it to deal with the exact wavefront
based signal model. The method in [7] uses five transmitting
antennas and four cross-covariance matrices between the out-
put data blocks to estimate the location parameters, thus, leaves
the remaining six cross-covariance matrices unexploited. In
[7], if the number of transmitting antennas increases, the
unused portion of the covariance matrix also increases. In
the proposed method, we try to use all the submatrices of
the covariance matrix. Due to the use of submatrices in the
method in [7] and the proposed method, the maximum number
of localizable targets is limited by the number of receiving
antennas. Like most of the existing near field sources local-
ization methods, the method in [7] works only with the arrays
whose interelement spacing is less than or equal to a quarter of
the carrier wavelength. The proposed method can avoid such
constraint, and support the interelement spacing greater than
a quarter of the carrier wavelength. Along with this paper, we
have also proposed another method in [15] which is based on
the near field model with Fresnel approximation like [7].

The remainder of the paper is organized as follows. Section
II formulates the spherical wavefront based signal model for
the near field region of a bistatic MIMO system with uniform
linear transmitting and receiving arrays. Section III describes
the proposed method to estimate the location parameters of
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targets viz. angles of departure and arrival, distance between
the targets and the reference point of the transmitting array,
and distance between the targets and the reference point of
the receiving array. Section IV shows the performance of the
proposed method.

Notations

[0 denotes the Khatri-Rao product. ®{v} denotes the di-
agonal matrix with components of vector v along its diag-
onal. £{e} implies the expected value. [o]*, [o]T, [¢]?/, and
[8]" respectively represent the conjugate, transpose, Hermitian
transpose, and pseudo inverse of a matrix. [¢] ™! denotes the
inverse of a square matrix. R and C are the sets of all real and
complex numbers respectively. £ denotes the principal value
of the argument of a complex number. I signifies an identity
matrix of dimension G x G where GG belongs to the set of
positive integers.

II. SIGNAL DATA MODEL

Assume a narrowband bistatic MIMO system with M
transmitting and N receiving omnidirectional sensors. Let
d. and d, be the interelement spacings in the transmitting
and receiving uniform linear arrays respectively. In addition,
we suppose that each transmitter emits temporally orthogonal
signals with same bandwidth and carrier frequency which
impinge on P near field point targets and their reflections
are intercepted by the receiving array. At the reception, the
orthogonal signals are separated by using matched filters. The
received matched filtered signal data at time ¢ can be written

as [3]-[6]
y(t) = (AL B) s(t) + n(t) (1)

where y(t) € CMN*1 is the received signal data vector. s(t)
contains the reflection coefficients of P targets which follow
Swerling model II [16]. n(¢) is the noise vector with spatially
and temporally white complex Gaussian components with zero
mean and covariance matrix E{n(t) nf (t)} = 02I;n where

o2 is the noise variance. A = [ay, ag, --- , ap] € CM*P
and B = [by, by, ---, bp] € CNXF are the directional
) s g, p)] " and

matrices of P targets with a, = [1, a(

b, = [1, bp,2), -+ » by, ny]T respectively being the direc-
tional vectors of departure and arrival of the pth target having
their first element as their reference point where a(,, ) =
673'2'/1'5@(7”7’7)/)\7 b(p7 n = e*j27rér(py n)/)\’ m € {1’ 2’ .
M}, n e {1,2,--- ,N}, X\ is the wavelength of the carrier

wave,
1) de pep COS(eep)

Oc(m. ») \/pe
— Pe, ()

is the difference between the distance traveled by the signal
emitted by the mth transmitting antenna to reach the pth target
and the distance traveled by the signal emitted by the reference
transmitting antenna to reach the same target,

7"(10 ny \/p’f

m—1)2d2 —2(m

(n—1)2d2 —-2(n—1)d, py, cos(b,,)
—pr, )

ISBN 978-0-9928626-7-1 © EURASIP 2017

is the difference between the distance traveled by the reflected
signal from the pth target to the nth receiving antenna and the
distance traveled by it to reach the reference receiving antenna,
pe, and p,. are respectively the distances from the reference
transmitting and receiving antennas to the pth target, 0., is
the angle of departure measured at the reference transmitting
antenna with respect to the axis of the transmitting array, and
0, is the angle of arrival of the pth target measured at the
reference receiving antenna with respect to the axis of the
receiving array [11]. 6., and 0, can vary from 0 to 7 rad.

III. PROPOSED LOCALIZATION APPROACH

As in [7], the received signal vector is subdivided into M
subvectors belonging to each transmitting antenna as y(t) =
[T (t), yZ(t), -+, y%,(t)]T. The subvector corresponding to
the mth transmitter can be written as

= Ym(t) + np(t) “4)

where n,,(t) is the corresponding noise subvector and
Ym (t) = B D,, s(t) where

Ym (1)

aim, P)) } )

is the diagonal matrix with the elements of the mth row
of A as its diagonal components. As defined above, B =
[b1, ba, - -+, bp] is the directional matrix of P targets of the
receiving array.

The eigendecomposition of the covariance matrix R =
E{yt)yt(t)} € CMNXMN can be written as

R=UAU" (6)

D,, = g{[a(m,l)a A(m,2)s """

where the columns of U are the eigenvectors and the diagonal
elements of A are the corresponding eigenvalues. If the eigen-
values are sorted in descending order, then the gth eigenvalue
can be expressed as

ﬁq+02
Nq: 2
g

where [i, is the gth eigenvalue among the P nonzero eigen-
values of (ACDB)Rs(AG B)H arranged in descending order
with Rg = £{s(t) s (t)}. We assume that P is known. The
following subspace based approach can be used to remove
the additive noise, in which the noiseless covariance matrix is
reconstructed from U and A of R as [17]

R=UD{[pu — 0> ,up — o }U (8)
where U contains the columns of U corresponding to the P

largest eigenvalues of . When a finite number of samples is

used, then ppy1 # ppio # -+ # PMN F 2. To overcome
it, we estimate the noise variance by 62 = (ps1 + ppyo +
+ pen) /(MN = P).
Theoretically, R = (A B)Rs(A [ B)H
as a block matrix with submatrices

R,y = EGm (1) G (1)} € TN
=BD,, R,D;, B )

if ge {1,2,---, P}

7
ifge {P+1,P+2,-- ™

,MN}

can be viewed
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where m’ € {1,2,---, M}. When m = 1, we have
R, .y =BRsD;, B (10)

because D is the identity matrix. Using (10), (9) can be
rewritten as

R(y,m = BD, BV R( ). (11)
On rearranging, we can get
3 P2+ _
Ry, mn R}, .y = B Dy B (12)

where [o] 1 denotes the inverse operation using singular value
decomposition which is explained below.

As mentioned in [7], the inverse of R(LW) should be
calculated by using the singular values and vectors corre-
sponding to the P largest singular values to improve the
robustness in a noisy environment. It is because, when P <
N, R(Lm/) should theoretically be a non-invertible square
matrix. Thus, we use the following method to obtain its
inverse and use R?‘l’m/) instead of R(_l%m,) to represent its
inverse. Let R(l,m’) = U,y Sm V& where U,,,, € CN*N,
S, € RYXN “and V;,,, € CV* are the matrices containing
the left singular vectors, singular values, and right singular
vectors respectively. Then, Ram’) = ‘V/m/ 5’;1,1 Ijn{{/ where
U,, € CNXP § . c RPXP and V,,, € CVXP are the
matrices that contain the left singular vectors associated with
the P largest singular values, the corresponding P singular
values and right singular vectors respectively. In practice,
the remaining (N — P) singular values will be close to
zero. Therefore, R(Lm/) will not be rank deficient and the
convectional way of inverting a square matrix may introduce
numerical inaccuracy. Thus, this step improves the numerical
accuracy of the calculation of inverse.

The submatrices with the same index m have the same D,,,,
thus we can add them together as

M
— 1 o o
R,=— > R R} ., =BD,B. (13

m'=1

(13) can also be expressed as

R.B=BD,, (14)

where the columns of B and diagonal elements of the di-
agonal matrix D,, (5) are, by definition, respectively the
eigenvectors and eigenvalues of R,,. Let W(m, p) aNd V(s p) bE
respectively the pth eigenvector and eigenvalue of R,, (Y(m, p)
is one of the P largest eigenvalues). Further, we can write
U(m,p) = X(m,p) ¢/ #tm.») by and Vm,p) = @(m,p) Where
O(m,p) and @, ) respectively represent the scaling factor
and phase shift introduced during the eigendecomposition.
Since the eigendecomposition of M — 1 matrices R,, (with
m € {2,3,---, M}) is performed independently, therefore an
additional step is required to pair all the M — 1 sets of the
eigenvalues and eigenvectors. Classically, the pairing can be
done by comparing the inner product of the eigenvectors from
the fact that the inner product of two aligned vectors is greater
than that of two nonaligned vectors [7].
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pr, and 6, can be estimated from the angular part of
U(m,p).- The argument of a complex number can only be
calculated in its principal form. Therefore, phase unwrapping
is necessary [18]. Phase unwrapping also introduces phase
shift. As we know that Zb(, 1y = 0, therefore the unwrapped
phase at » = 1 is the phase shift introduced during the
eigendecomposition as well as unwrapping. Thus, subtracting
this phase shift from all the remaining components of the
unwrapped phase vector gives an estimation of the true phases.
The eigendecompositions of M — 1 R,, matrices provide
M — 1 eigenvectors associated to the signal reflected by the
pth target. Thus, M — 1 estimates of the true phases can be
obtained for each target. At high SNR each estimation will be
the same, however, when SNR is low, it is better to combine
them by averaging. Let ST@, ., be the estimated value of 4, |
obtained from the averaged estimate of the true phase by
dividing it by —27/\.

Rearranging (3) leads to

2(n—1)d. py, cos (0y,) +2 Orty.m P
. 2 42 22
= (TL 1) dr 67’(

which can be used to construct a system of linear equations in
pr, cos(0, ) and p, for all the values of n. Total least squares
method given in [19] can be used to solve this system. To
obtain the total least squares estimates, let [v1,, va,, vgp]T be
the right-singular-vector associated with the smallest singular
value of

o (15)

_ . y -
2d, 2 (E”P’ 2 d: — 6T<P’ »
2 2
4d, 2 ‘EWM) 4d; o %@,3)
6d, 2 5T(M> 9d; — 6%#1)
g 2 2 Ao
_2 (N —-1)d, 25T(p_N) (N —-1)*d2 — 5,0(% .

which is constructed by using the coefficients of (15). The
range and angle of arrival of the pth target can respectively
be calculated by p,, = —vo, /v3, and érp = cos ! (vlp /’ng)
where p., and é,.p denote the estimated values of p,., and 0,
respectively.

The angle of the eigenvalue v(,,, ,) = € n
be used to estimate the transmitter side ranges and angles of
departure of the targets. Being a complex entity, the unwrapped
phase of 7(,,,,) should be estimated, which is followed by
the phase shifting with respect to the phase of reference
component like before to provide the true unwrapped phase
vector. Since, (2) and (3) have the same expression, the similar
steps are conducted as in the case of the estimation of the
receiver side location parameters. The estimated value of
Oe(m. p i obtained from the true unwrapped phase and then
used to build a system of linear equations whose mth equation
is given by

_‘7271-5&(7",,}))/)\ ca

2(m —1)de pe, cos (Hep) +2 5@(,,", » Pey
= (

m—1)%d; =&, (16)
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with 56(%1}) being the estimated value of o, . Total least
squares is used to estimate the unknowns, viz. p., cos(f,)
and pe,, of the system of linear equations. Similar to the
receiver side estimation, let [wy, wa,, ’lng]T be the right-
singular-vector linked with the smallest singular value of the
following matrix constructed from the coefficients of (16)

2d. 20c,, d? — 52
f@2p) e €(2,p)
2 2
4d. 2 qe(?n p) 4 de - (Ee(s, p)
2 2
6d, 265(4)” 9d: —6%' )

(M —1)2d2% - $§(M’ N

2(M—1)d. 26

€(M, p)

The range from the transmitter to the pth target and angle
of departure can respectively be given by p., = —ws, /ws,
and éep = cos™ ! (wi, /ws,) where p., and éep denote the
estimated values of p., and 0, respectively.

Even though the proposed method is inspired by the method
in [7], it doesn’t come across any step which can pose any
constraint on the interelement spacings of the transmitting
and receiving arrays. Therefore, the proposed method supports
interelement spacing of A\/2.

IV. SIMULATION RESULTS

Consider a bistatic MIMO system consisting of M = 8
transmitting and N = 9 receiving antennas. The interelement
spacing in both the transmitting and receiving uniform linear
arrays is A/2.

Fig. 1 and Fig. 2 respectively show the performance
of the proposed method with respect to SNR in terms of
RMSE in the estimation of the ranges and directional angles
of two targets located at (9.72), 1.83rad, 11.85), 1.19rad)
and (11.51A, 1.08rad, 9.47), 1.63rad) which indicate (pe,,
Oc,, Pr,> 0r,). The signal data with L = 103 samples are put
under K = 10% Monte Carlo trials to calculate the RMSE.
The RMSE is calculated by using the following equation

K

) = 3| 7 D (k) —my)?

k=1

a7

where 1, € {pe,, Oc,, pr,, O, } and i, (k) € {pe, (k), O, (k),
pr, (K), 9Tp(k)} is the estimated value in the kth trial.

Fig. 1 and Fig. 2 indicate that the proposed method is able
to estimate the location parameters of near field targets without
using the Fresnel approximation.

In addition, assume another MIMO system with M = 5
transmitting and N = 9 receiving antennas with interele-
ment spacing of \/4. Using L = 10® samples, K = 103
Monte Carlo trials, and two targets at (0.71A, 1.9rad, 2.62),
1.04rad) and (1.68), 1.01rad, 3.11)\, 0.94rad), we have
compared the RMSE of the location parameters estimated by
the method in [7] and the proposed method in Fig. 3 and
Fig. 4.

Fig. 3 and Fig. 4 show the expected results. The RMSE of
the location parameters estimated by the proposed method is
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—o—e(p,,
— 6 —€pe,
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-+ —elpn,
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0 5 10 15 20 25 30
SNR (dB)

Fig. 1. RMSE in ranges estimation versus SNR; de = dr = )\/2, K = 103,
L=103, M =8 N=9,and P =2.

RMSE (radian)

‘
0 5 10 15 20 25 30
SNR (dB)

Fig. 2. RMSE in angles estimation versus SNR; de = d = \/2, K = 103,
L=103, M =8 N=9,and P = 2.

less than that of the method in [7] because of the absence of
the systematic bias introduced by the Fresnel approximation.
In the figures, at high SNR, when the Fresnel approximation
error surpasses the error due to the additive noise, the RMSE
plot of [7] experiences a floor effect.

The method in [7] is based on the approximated wavefront
model. Therefore, they have used the signal data generated
from the approximated wavefront model to analyze the per-
formance of their method. However, in reality, the received
data should be ruled by the exact spherical wavefront based
signal model, which is the reason that the performance of the
method in [7] is rather poor in our simulations.

V. CONCLUSION

An improvement of the subspace based method in [7] has
been proposed in this paper to localize targets in the near
field region of a bistatic MIMO system without making the
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Fig. 3. RMSE in ranges estimated by the method in [7] and the proposed
method versus SNR; de = d = A\/4, K =10%, L =10, M =5, N =9,

30

and P = 2.
107
\\\\x~~—->e~—~a<————>e——79<7777
107} 1
E e [e(0.) + €(0)]/2 [7]
E o [ll) + 0,)]/2: 17
P —o— [e(b,,) + €(6,,)]/2; proposed
E — 6 —[e(b,,) + €(6,,)]/2; proposed
10°}
1074 L L L L L

15
SNR (dB)

20

25

30

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Fig. 4. RMSE in angles estimated by the method in [7] and the proposed

method versus SNR; de = d = A\/4, K =103, L =103, M =5, N =9,

and P = 2.

Fresnel approximation. The proposed method has much better

(171

(18]

[19]

performance in terms of RMSE of the estimated location

parameters than the method proposed in [7]. Thanks to the

[20]

capacity of directly dealing with the exact wavefront model

and the exploitation of all the available information contained

[21]

in the covariance matrix of the received signal. In addition,
contrary to the most of the existing approximated model based

methods, the proposed method works even for the array with

interelement spacing equal to \/2.

The performance analysis of the proposed method with
the advanced covariance matrix estimators [20]—[22] and real
radar data can be done as a future work.
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