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Abstract—In this work, a new algorithm for angular param-
eters estimation of incoherently distributed sources is proposed.
By using the general array manifold model, the nominal DOAs
can be firstly separated from the original array manifold. Then a
generalized shift invariance property inside the array manifold is
identified, based on which the nominal DOAs can be estimated.
The angular spreads are next estimated from the central moments
of the angular distribution. Compared with the popular ESPRIT-
ID algorithm, the proposed one could achieve higher accuracy,
could handle more sources, and could be applied on a much more
general array structure. Numerical simulations are provided to
show the superior performance of the proposed algorithm over
the existing works.

I. INTRODUCTION

Classical direction-of-arrival (DOA) algorithms, e.g., MU-
SIC [1] and ESPRIT [2], are always developed for point source
model that corresponds to the 1-ray scenario [3], i.e., the
signal of the source arrives at the array through one direct
path. However, in many applications like radar, sonar, speech
processing and mobile communications, the spatial distributed
source model [4] is more appropriate since the signal will
reach the array through many rays reflected or scattered from
the vicinity of the source. In spatial distributed source model,
the angular parameters contain the nominal DOA (usually
defined as the mean value of DOAs of multiple rays) and
the angular spread (usually defined as the standard deviation
of angular distribution around the nominal DOA). When the
signal components from different rays are completely uncor-
related, the source is categorized into incoherently distributed
(ID) source [4].

Since the nominal DOAs and angular spreads are coupled
parameters, it is much more complex to estimate the angular
parameter estimation in ID source case than in the point source
case. Many existing works [3]—[8] for this topic suffer from the
heavy computational burden due to multi-dimensional spectral
search. An ESPRIT-based estimator for parameters estimation
of multiple ID sources, called ESPRIT-ID, was proposed in
[9]. This approach has closed-form solutions for decoupled
estimations of the nominal DOA and angular spread. However,
it restricts the array geometry to be two identical, closely-
deployed arrays to ensure an approximate shift invariance
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property.

In this paper, a novel algorithm for estimating angular pa-
rameters of multiple ID sources is proposed with fewer restric-
tions for actual implementation. Applying general array man-
ifold (GAM) model [10], we first construct a one-dimensional
(1-D) spectrum function for estimating nominal DOAs based
on a newly introduced generalized shift invariance property.
Then, the angular spreads can be computed with closed-form
from the central moments of the angular distribution. The
proposed algorithm outperforms the conventional ESPRIT-ID
algorithm, removes the restrictions on array geometry and can
handle almost twice more sources. Compared to conventional
multi-dimensional search approaches, e.g., [3], the proposed
algorithm has comparable estimation performance and much
lower computational complexity.

II. SYSTEM MODEL

Assume that there are narrow-band signals {s(¢)}/_, from
K 1D sources impinging on an arbitrary line array with M
omnidirectional sensors!. The received signal at the array can
be expressed as

K Ly
r(t) = > sk(t) Y waBa@ri(t) +n(t), (1)
k=1 =1

where 0y, ;(t) € (—90°,90°) is the DOA of the Ith ray from the
kth signal; Ly, is the number of rays inside the kth signal; ¢t =
1,2, ..., T is the sampling time, a(f ;(¢)) is the array manifold
vector, and T is the total number of snapshots; i ;(t) is the
complex-valued ray gain and n(t) € CM*! is the complex-
valued additive noise, which is spatially and temporally white
with variance 2.

As the sources are incoherently distributed sources, the ray
gains {7k, (t)}]_, are temporally white, independent from ray
to ray, and zero-mean, whose covariance is given by [6]

2

Bt () = FE0(k— K)O(L = 1)l ~ ). @

"Note the arbitrary line array still has to obey the half-wavelength rule to
avoid phase ambiguity.
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Mqreover, the mth element of the array manifold vector
a(ﬁk,l(t)) S (CMXl is [1]

[ (Ora(t ))} = exp {]2;:6”1 sin(@k,l(t))} , 3)

where ) is the signal wavelength, and z,, is the coordinate of
the mth senor. -
We may represent 0y ;(t) as

Or1(t) = O + pr(t), 4

where 0y, is the nominal DOA of the kth source; ¢y ;(¢) is the
deviation from the nominal direction and is assumed to be a
zero-mean random variable with probability density function
pr(C; ok). It is generally assumed that pg ((; o) is a symmetric
function in ¢ and is parameterized by the unknown standard
deviations oy,. Moreover, p;((; 0}) is generally considered to
be uniform or Gaussian distribution [9].

The following assumptions are adopted in this paper:1) The
number of sources, K, is known as a prior and the number of
array sensors M is larger than 2K; 2) As [9]-[11], we assume
the angular spreads {0} | are small; 3) The numbers of
incoming rays {L;} | are large.

III. THE PROPOSED ALGORITHM

A. GAM Modeling

With the aid of (4), the manifold a(f;(t)) can be well
approximated by the first-order Taylor series as

a(fr,(t)) ~ a(0x) +a'(0r)ri (1), (5)

where a’(0y) is the partial derivative of a(6y) with respect to
0r. Then the received signal in (1) can be re-expressed as

K
Z( (Or) v 0(t) +a’ (O ) vk 1 (t )) +n(t), (6)

k=1
where
ko (t) = sk(t Zm (7)
Lk
Vg1 (t) = si(t) Z'Yk,l@k,l(t)' (®)
=1
We can reformulate (1) into the GAM model as [9], [10]
r(t) ~ B(6)g(t) + n(t), 9)
where
B(6) = [A(01),A(0),...,A(0k)] € CM*2E (10)
A(0x) = [a(0r),a(0x)] € CM*2, (11)
gt)=[gl.g3.....8k)" € C*F*1, (12)
gr = [vk0(t), e (1)) € C*Y, (13)
6=1[01,...,0k]" (14)

Note that the generalized manifold matrix B(0) is only
determined by the nominal DOAs and is independent of the
specific distribution of angular deviation. Hence, unlike many

existing works [3]-[6], [8], [11], the proposed algorithms is
insensitive to the uncertainties of the angular distributions and
can handle the case when multiple sources exhibit different
angular distributions.

Since the transmitted signals, ray gains, and the angular
deviations are uncorrelated from each other, it can be proven
that the central moments of the angular distribution, i.e., a,%,
is included in the variance of vy 1(t) and the covariance of
g(t) can be derived as

A = E{g(t)g" ()} = diag{A1, As,..., A},

where A, = prdiag{l,07}, pr = E{|sx(t)|*}o2, is the
received signal power of the kth source. We see that the
estimate of A can be used for angular spread estimation.

Moreover, the covariance matrix R of the received signal
can be approximated as

R = E{r(t)rf(t)} ~ B(O)AB (0) + 021,,.

15)

(16)
B. The Nominal DOA Estimation

Divide the entire array into two different subarrays with
equivalent number of sensors. The two subarrays are allowed
to have overlapping sensors, and hence the number of sensors
in each subarray N could take the value from {2,..., M —1}.
Re-denote {71} ; and {z3,}_; as the locations of the
sensors in each subarray, respectively. The received signals of
both subarray can be expressed as

r(t) = B1(0)g(t) + n(t), (17)
ra(t) = Ba(0)g(t) + n(t), (18)
where
B1(0) = [A1(61),A1(62),...,A1(0Kk)] € CVN*2E (19)
B2 (0) = [A2(61), Aa(a), ..., Ax(0k)] € CVNX2K (20)

are the generalized manifold matrices of the two subarrays,
respectively.
A key observation is that

As (k) = A1(6r) © Py, 2D
where
eI b1k ﬂleﬁbm
@), = : : e CN*2, (22)
eI PNk ﬁNejti’Nk
and © denotes the Schur-Hadamard product, ¢, =
25 Ay, sin by, Az, = 39,5 — xln,ﬂn:“" n=1,...,N.2

In fact, it is found that (21) exhibits 211 shift relat1onsh1p
between the generalized manifold of two subarrays, called the
generalized shift invariance property.

Therefore, B2(6) can be expressed as

By(0) = [®1 0 A1(01),...,Px © A1(0K)]. (23)

2The sensors of the first subarray cannot be located at the original in order
to make sure that the denominator in 3, is not zero.
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Through eigen-decomposition of R , we obtain the signal
subspace E,, which is of M x 2K and is composed of the
eigenvectors of R corresponding to the largest 2K eigenval-
ues. It is known from [9] that the signal subspace E; spans
the column space of the generalized manifold matrix B(8),
which yields

E; =B(6)T, (24)

where T is an invertible 2K x 2K matrix.

We then extract two N x 2K sub-matrices E; and E,
from E,; whose rows correspond to the partition of the two
subarrays. Obviously, there are

E, =B, (0)T, (25)

E; =By (0)T. (26)
Define a new matrix as a function of 6:
el B el

U (0) = : : , 27)

eJVN 5Neij

where ¢, = % Az,sinf,n =
another N x 2K matrix C(0) as

1,..., N. Further define

C0) =[®(0),®(0),...,®(H) c CVE_ (28)
K
Let us then formulate
D(¢) =E; - C(¢0) O E;
- (B, -C)oB)T=Q@O)T.
where
Q) =[(®1—¥(0)OA1(61),..., @K_‘P(e))@Al(eg)o]j

It can be found that when 6 = 6, all the elements of
(®r — ¥(0)) will become zero. Thus, if 2K < N, then
D(0) will become rank deficient, and the determinant of
DA (9)D(#) will become zero. Hence, the nominal DOA
estimates {ék}§=1 can be obtained by finding the highest K
peaks of the following function:

1
1) = det{D(0)"D(6)}

In practice, the covariance matrix R can be estimated with
. H 1 T H
finite samples via R = 7 >, r(t)r" (t).

€29

C. The Angular Spread Estimation

After getting the nominal DOA estimates {ék}szl, A can
be obtained from
A=B(0) (R - 57Ly)(B"(9)), (32)
where B(é) is the estimate of the generalized manifold by
substituting the estimates of nominal DOAs into (10), and 62
is the estimate of the variance of the noise which is the average
of the (M — 2K) smallest eigenvalues of R.

According to the definition of A in (15), the angular spread
estimates are given by

[Al2k 2k

&k = —_—
[Al2k—12k-1 ’

D. Comparison with ESPRIT-ID

In ESPRIT-ID, the value of N can only be M/2, where
M is even, whereas in the proposed algorithm, the value of
N can be (M — 1) at most. Hence, the most sources the
proposed algorithm can estimate is |(M — 1)/2], where |-|
returns the maximum integer that is not bigger than the inside
argument. Meanwhile, in ESPRIT-ID, the maximum number
of detectable sources will be | M /4] only. It is obvious that
the proposed algorithm can handle almost twice more sources
than ESPRIT-ID.

ESPRIT-ID restricts the two subarrays to be identical
and closely-placed in order to ensure the approximate shift-
invariance property it exploits. However, the approximation
brings severe performance degradation in nominal DOA esti-
mation. Such degradation is avoided in the proposed algorithm
since the generalized shift invariance property that contains
no approximation is exploited, as in (21). The superiority
of accuracy by the proposed algorithm will be proved in
simulations.

k=1,2,..K. (33)

IV. SIMULATIONS

In this section, we provide numerical results to demonstrate
the performance of the proposed algorithm. The root mean
square error (RMSE) is adopted as the figure of merit. Totally
500 Monte-Carlo runs are used for average. The variance of
ray-gain is set as {U,QYk}szl = 1. The number of scattering
paths is set as {Ly } 2, = 75. The signal-to-noise ratio (SNR)
is defined as SNR = pj/o2. The number of snapshot is
T = 300. For the proposed algorithm, the number of sensors
included in each subarray is N = M — 1. The search region
for nominal DOA estimation is (—90°,90°) and the search
region for angular spread estimation is (0°, 3°).

Subarray 1

Subarray 2

(a) ESPRIT-ID

_______________ Swbarayl
999999 00 g8 99 99
[ N N R A N R N
0 l%l‘.lli!ll‘.l“ll x
(6 86 88 66 88 68 88 88
Subarray 2

(b) The proposed algorithm

Fig. 1. Subarray formation of the proposed algorithm and ESPRIT-ID.
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Fig. 2. Spectrum of the proposed algorithm for nominal DOA estimation in a
seven-source case, SNR=15dB, #; = —60°,02 = —45°,603 = —30°,04 =
—5°,605 = 25°,0s = 40°,07 = 65°,0 = 1°.

In the first example, we consider large number of ID sources
to exhibit the superiority of the proposed algorithm over
ESPRIT-ID. For the 16-element array in Fig. 1, the subarray
formation in ESPRIT-ID is limited into two non-overlap 8-
sensor uniform linear arrays with half-wavelength spacing, and
the distance between the two subarrays is Ad = \/10, as
shown in Fig. 1(a). On the other side, the proposed algorithm
divides the array into two overlap 15-sensor subarray as
shown in Fig. 1(b). The maximum number of ID sources
that could be handled by ESPRIT-ID is 4 while that for the
proposed algorithm is 7. Let us then set the number of the
ID sources to be 7 with the corresponding nominal DOAs
as 01 = —600,92 = —450,93 = —300,94 S —50,95 =
25°,0¢ = 40°,07 = 65°, respectively. The SNR is taken as
15dB, and the distribution of all sources is assumed to be
Gaussian with a same angular spread o = 1°. Fig. 2 shows
the spectrum (31) of the proposed algorithm for the nominal
DOA estimation. Clearly, the proposed algorithm can provide
valid nominal DOA estimation in this case while ESPRIT-ID
completely fails.

In the second example, we compare the proposed algorithm
with the classical ESPRIT-ID [9] and the 2-D spectral search
algorithm [3] 3 in estimation accuracy. The Cramér-Rao bound
(CRB) [11] is also plotted to make the comparison complete.
Consider two ID sources with nominal DOAs 6; = 30°,
03 = 50°. The 16-element array in Fig. 1 is still exploited. The
angular distribution is Gaussian with angular spreads o1 = 1°,
oo = 1.5°. Fig. 3 and Fig. 4 illustrate the RMSE performance
versus SNR for the proposed algorithm, ESPRIT-ID algorithm
[9] and the 2-D search algorithm [3], respectively. It is seen
that for both estimation of nominal DOA and angular spread,
the proposed algorithm outperforms ESPRIT-ID significantly
due to the fact that it exploits as many sensors as possible in
the overall array, whereas ESPRIT-ID can only exploit half

3The choice of this 2-D algorithm is based on the fact that it achieves good
accuracy, outperforms some popular methods, such as DISPARE [5]. See [3]
for detail.

Nominal DOA estimation

[ —6—Proposed
—A— ESPRIT-ID
-| —8— 2-D search

CRB

RMSE (degree)

0 5 10 15 20 25 30
SNR (dB)

Fig. 3. RMSEs versus SNR for nominal DOA estimation, #; = 30°, 62 =
50°, o1 = 1°, 0o = 1.5°.

Angular spread cstimation

—6&— Proposed
—A— ESPRIT-ID
—+H— 2-D search
CRB

RMSE (degree)

0 5 10 15 20 25 30
SNR (dB)

Fig. 4. RMSEs versus SNR for angular spread estimation, 8; = 30°,
0> = 50°, 01 = 1°, 09 = 1.5°.

sensors. Moreover, the generalized shift invariance property is
exploited accurately in the proposed algorithm while ESPRIT-
ID only approximates shift invariance property. Under high
SNRs, the signal subspace Eg spans almost the same space
as the generalized array manifold B(6). In this case, the
number of sensors in each subarray imposes less impacts
on estimation accuracy. Hence, the estimation performance
of both the proposed algorithm and ESPRIT-ID for nominal
DOA and angular spread reach unanimity under high SNRs.
Meanwhile, when compared with 2-D search algorithm, the
proposed algorithm performs worse for the nominal DOA
estimation, but performs better in terms of angular spread
estimation. Nevertheless, please keep in mind that the 2-
D search algorithm suffers from very high computational
complexity.

V. CONCLUSIONS

In this paper, we developed a new angular parameters esti-
mation algorithm for multiple ID sources. The nominal DOAs
were first estimated through 1-D spectral peak search, based
on a rank reduction criterion. Then the angular spreads were
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estimated with closed-form solutions. Compared to ESPRIT-
ID algorithm, the proposed algorithm improves the estimation
accuracy, removes the limitation of subarray formation as well
as handles more ID sources. When compared to conventional
multi-dimensional search approaches, the proposed algorith-
m has comparable estimation performance and much lower
computational complexity.
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