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Abstract—Deep Learning has been applied successfully to
speech processing. In this paper we propose an architecture for
speech synthesis using multiple speakers. Some hidden layers are
shared by all the speakers, while there is a specific output layer
for each speaker. Objective and perceptual experiments prove
that this scheme produces much better results in comparison
with single speaker model. Moreover, we also tackle the problem
of speaker adaptation by adding a new output branch to the
model and successfully training it without the need of modifying
the base optimized model. This fine tuning method achieves better
results than training the new speaker from scratch with its own
model.

I. INTRODUCTION

Deep Learning has been applied successfully to different
kinds of tasks such as computer vision, natural language
processing or speech processing [3], outperforming the ex-
isting systems in many cases. In the case of speech synthesis,
many works included Deep Neural Networks (DNN) and Deep
Belief Networks (DBN) to perform acoustic mappings and
prosody prediction [21], [7], [17], Also, Recurrent Neural
Networks (RNNs) and their variants, like the Long Short
Term Memory (LSTM) architecture [10], have leveraged
completely the sequences processing and prediction problem,
which makes them lead to interesting results in the speech
synthesis field, where an acoustic signal of variable length has
to be generated out of a set of textual entities. Some example
works using this structures can be seen in [6], [22], [8], [20].
Previous to deep learning, existing text to speech technologies
included the unit selection speech synthesis [12] and the statis-
tical parametric speech synthesis (SPSS) [23]. Unit selection
analyzed the set of phonemes contained in a sentence and
their context, and those features were mapped into pieces of
recorded natural speech, all being concatenated to produce
a continuous stream of voice signal. SPSS introduced the
concept of learning a speaker model from data with parametric
representations and then throw away the data once speaker
characteristics were learned. Some remarkable differences
between both was that, although SPSS could not reproduce the
same level of naturalness [23] as unit selection did, it had much
less footprint in memory, and it also let the user transform any
speaker model to adapt the voice to different requirements in
speed, pitch, etc. An important feature of SPSS was then the
speaker adaptation technique, in which we could add the voice
of someone that was not previously in the system, and with
few data the model could reproduce the newcomer speech.
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In this paper we want to propose an approach to tackle two
problems with a single RNN-LSTM model: making multiple
speaker models out of the same structure, and make speaker
adaptation with new data on top of this model. Therefore,
we wanted a system capable of holding many speaker models
inside the same shared structure, so that every user shares
its characteristics with the others, thus reducing the required
number of parameters per user and letting them interact in
the lower layers. There was a proposal of a similar approach
by [5] with DNNs performing multi-task learning, but in
our case we work with RNN architectures, with a different
training procedure and also with a different speaker adaptation
architecture. The structure of this work is the following; in
the next section we make a brief introduction about the RNN-
LSTM model. Then in section III we describe our proposed
model, followed by an explanation of the experimental setup
made in section IV. Sections V and VI cover the results and
conclusions respectively, where we analyze the response of
our model to different questions we make about its properties.

II. REVIEW OF RECURRENT NEURAL NETWORK

Recurrent Neural Networks (RNNs) are a special type
of Neural Network topology well suited for processing se-
quences. When we talk about a unidirectional recurrent layer
we can say that it has memory about the past, so at time t
they have an input vector ©; € R™ and the memory state at
time ¢ — 1 hy—; € R™, producing the new memory state hy,
also called hidden state, with the following set of operations:

htzg(W-wt+U-ht_1+b) (l)

where W is the input-to-hidden weights matrix, U is the
hidden-to-hidden weights matrix where the feedback is made,
b is the bias vector and g is a specified element-wise non-
linear transformation, such as the hyperbolic tangent. As we
can see, for every input sequence X = {x1,x2,...,xT}
we obtain an output sequence H = {hq, ho,..., hr}, where
each output from the layer keeps track of dynamic changes
in time, and this is what makes the recurrent model a really
powerful option for sequences.
In this work we used LSTM layers, as they cope better with the
vanishing gradient problems [9] that appeared when training
regular RNNs. They also model the long term dependencies in
a better way than the simple RNNs do because of their gating
mechanisms [10].
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III. PROPOSED ARCHITECTURE

The proposed architecture is depicted in Figure 1. There are
two first feed forward layers serving as a bottleneck for the
sparse inputs. These intend to get a deeper knowledge about
the input data, which is formed by a mixed set of multiple
types of features that will be presented in section IV. There
is a first LSTM hidden layer, processing every transformed
input set of features at each time step, and deriving the
results to the output branches. Dropout [19] is performed
between the hidden recurrent layer and the output layers to
mitigate any over-fitting caused by the low amount of data
available. Each output branch belongs to a different speaker,
so at prediction time we inject the linguistic parameters to
the model to obtain every speaker’s speech parameters at the
output.
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Fig. 1. Proposed architecture using regular feed forward (dense) layers and
recurrent LSTM layers. There are N outputs belonging to N different speakers.

Every output branch is independent of each other, so it

propagates its own error through the whole shared structure
at training time without the need of padding any data for
the other outputs. The specifics of the training method will
be discussed in section IV. Note that output layers are also
recurrent, so that dynamic features are not computed because
feedback connections within the layer keep track of the
dynamic evolution of outputs [22].
The intuition behind this architecture is that, whilst every
output branch is trained, it shares the first linguistic mappings
with other branches. This might lead to an improvement in
the final acoustic mapping of every speaker in comparison to
the speaker model trained in an isolated manner, because we
add more information during training time to get to correlated
predictions at the different outputs.

IV. EXPERIMENTAL SETUP

We worked with six voices from the TCSTAR [2] project,
where four of them contain expressive speech, and two neutral
voices from the Interface database [11]. We balanced the

data per user, such that all of them have approximately the
same amount of samples to train, i.e. 20 minutes of speech
per speaker. There are four male voices (M1, M2, M3, M4)
and four female voices (F1, F2, F3, F4). The F3 data is
separated from the other ones because it is used for the speaker
adaptation experiment. We will focus the results on the M1,
F1 and F3 speakers, all of them having 4 minutes of samples
for testing and 4 minutes for validating.

A. Network topology and training method

The first two feed forward layers have 128 hidden units

each one with tanh activation functions. The shared hidden
LSTM layer contains 256 memory cells, also with tanh
activation functions, and the dropout applied is 0.5. The
architecture parameters have been selected based on objective
seeking procedures performed with a single-output acoustic
model (concretely with M1 model). Finally, the output layers
contain 43 units to produce the later explained acoustic
predictions in a regression fashion after a sigmoid activation
function. The LSTM units get the forget gate bias initialized
to one for better performance, as specified in [13].
In the training stage, every speaker error is back-propagated
independently and sequentially, such that a speaker ID is
randomly selected in every round (assigning a turn to the
speaker), completing an epoch when all rounds of speakers
have been seen. A round then is a sequence of back-
propagated mini-batches, having /N mini-batches per round as
we have IV speakers, each speaker having its turn inside the
round, and when a speaker mini-batch is back-propagated we
move on to the next randomly picked one until all speakers
are processed and we can shuffle the IDs again. Figure 2
depicts the training procedure for a round in the epoch, where
the turn of every mini-batch is in brackets. Note that with
this method we do not require to have the same transcriptions
per speaker, as mentioned earlier, and also every mini-batch
is related to only one speaker. This training procedure is an
important difference regarding the aforementioned work with
multi-task DNN [3].
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Fig. 2. Exemplified training round for the N mini-batches. Dashed lines
represent the corresponding output error back-propagation. The numbers in
brackets express the order of that mini-batch inside the round.
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B. Acoustic Features

We used Ahocoder [4], a high quality vocoder, for the
waveform generation after the acoustic prediction. The net-
work maps an input set of linguistic characteristics to acoustic
features, which are then fed into the Ahocoder system to
generate the synthetic speech. The predicted set of features
include:

o 40 Mel-cepstral coefficients

o max. voiced frequency (fv)

o log-FO value

« voiced-unvoiced flag (uv)

The acoustic parameters are extracted in frames of 15ms
shifted every dms. They are normalized to be in the range
[0.01,0.99] during the training to work in the linear region,
and they have to be denormalized at prediction time with the
dynamic ranges extracted from every speaker’s training set.
The maximum voiced frequency output feature is also log-
normalized to compress the long tail into a narrower range.
Moreover, the log-FO contours are linearly interpolated in the
log domain so that there are continuous values when we
have unvoiced frames, but the voiced-unvoiced flag serves
to mask those virtual values out at prediction time. During
prediction stage, the cepstral parameters are post-filtered based
on [18] with a multiplicative increasing factor of py = 1.04
to overcome the smoothing effect at network outputs, similar
to what happened in SPSS [23].

C. Input Features

The input set of features fed to the model describe many lin-
guistic properties extracted from the text with the Ogmios [1]
front-end. The features are composed of different types of
data defined mainly in the HTS label format [16], involving
contextualized prosodic and phonetic features. First we have
categorical features involving phoneme identity, vowel identity
and Part Of Speech tags, all of them encoded in a one-hot
fashion. There are also other boolean types encoded with 1 bit
indicating if the current/next syllables are stressed or not, and
some boolean features are binary answers (yes/no) to a set of
questions regarding the type of phoneme (Affricate, Plosive,
Palatal,etc.) and the type of contents in the Part-Of-Speech
tags. Besides the categorical and boolean features, there are
also numeric ones encoding distances between punctuation
marks, number of phonemes in syllable, distance from current
phoneme to the end of syllable/word/sentence, etc. We z-
normalize them to absorb the possible outliers provoked by
long-tailed distributions, such that, for every feature = and its
distribution parameters u, o
L @)

o

One of the inputs is the duration of the current phoneme
in order to generate the proper amount of acoustic frames,
as well as the relative position of the current frame within
the total phoneme duration. This duration would normally be
predicted from the linguistic features, similarly to [22], but
in this work we focus in the acoustic mapping problem. The

i’:

duration features then have to be properly normalized to be
distributed between [0, 1]:
i Ind — Indp AT 3)
Indpes — Indimin d

where 7 is the relative position in milliseconds within
the frame, and d is the total duration of the phoneme in
milliseconds. The input features contain not only the current
time-step information, but also the information about the next
two following phonemes so that the closest future context is
also taken into account without changing the forward-in-time
nature of our recurrent model.
The total number of input features for the system are 362,
which is the concatenation of all the ones aforementioned.

D. Speaker Adaptation

For the purpose of checking how we can insert a new
speaker into the architecture with minimal changes and best
results, we have the speaker F3 separated. When the multiple
output model is trained, we get what we call the pre-trained
multiple speaker weights (the ones in all layers just before the
output LSTMs) and attach a new output branch to the model
to back-propagate the error for the new speaker through its
branch. We make the experiment varying the amount of data
available for the new speaker in batches of 25%, 50% and
100%, to check the possible change in the quality of the new
voice. Moreover, we mentioned the requirement of a simple
adaptation model, where we change the least things possible,
so we freeze the shared layers to not update them during the
back-propagation of the new speaker, training only the new
output branch.

V. RESULTS
A. Multiple output model

We make a first analysis by looking at the training loss
evolution of the different speaker outputs, and concretely
focusing on two speakers: M1 and F1. To establish a reference,
we trained M1 and F1 with a single output architecture and
multiple output one. The results can be seen in Figure 3,
where the 7 speaker learning curves are shown, depicting
that all output converge with a noisy behavior, given by the
training methodology where every speaker distorts each other’s
learning process for mini-batches of data.

There we can see how speakers F1 and M1 get to a lower
training loss when they are trained with the multiple output
mechanism. This is normally related to a better training
procedure where they reach a better point in the optimization.
To really see this effect, we first make an objective evaluation
by means of specific metrics for each kind of predicted feature.
The Mel Cepstral Distortion [15] (MCD) is known to be
correlated to subjective evaluations [14]. We also compute the
RMSE of the predicted FO (Hertz scale) and the error in UV
flag prediction.

T-1 39

MCD = (10v2)/(TIn10) > ([ (ctm — é1n)® (4

t= n=0
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Training loss evolution for the 7 outputs
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Fig. 3. Training loss evolution comparison. Speakers F1 and M1 decrease
the learning cost when trained with other speakers altogether.

where T is the number of frames

T-1

Z(fOt — for)? &)

t=0

RMSE [Hz] =

As depicted in table I, both speakers improve when trained
in the multiple output model almost in all metrics.

TABLE 1
OBJECTIVE EVALUATION FOR M1 AND F1 TRAINED ALONE WITH A
SINGLE OUTPUT MODEL AND TOGETHER WITH OTHER SPEAKERS (MIXED)
IN THE MULTIPLE OUTPUT ARCHITECTURE.

Model MCD[dB] || RMSE FO[Hz] || UV[%]
M1 alone 7.6 14.4 7.7
M1 mixed 72 13.8 5.8
F1 alone 7.0 17.3 4.8
F1 mixed 6.5 17.3 3.8

The subjective evaluation has been carried out with a prefer-
ence test made by 16 subjects. For both F1 and M1 speakers, 5
sentences are selected and evaluated. The listeners can choose
a declining score between two synthesized utterances; one
generated by the single output model and another one by the
multiple output one. Listeners then find five options available
from -2 (multiple output is much preferred) to 2 (single output
is much preferred). The results are depicted in Figure 4. It
can be seen that the testing subjects have all rather preferred
the multiple output model in most of the cases. We also
made a Wilcoxon test for the subjective evaluation to find out
how statistically meaningful are these results, obtaining the
following p-values: pr1 = 5.3 - 1077 and py; = 2.2 - 1075,

B. Speaker adaptation

In Figure 5 we can see how the validation cost for the F3
speaker improves when we add more data, something we

Preference test for speakers F1 and M1

F1 M1 Both

Fig. 4. Box plot of preference test scores. Scores range from -2 (multiple
output model is preferred) to 2 (single output trained model is preferred).
Both is the summary of all the answers, joining both speaker results. Red
lines: medians. Blue dots: means.

could expect, as it learns better with the more data it gets to
fine-tune the new output branch. It is interesting to see how
freezing the shared layers and training only the new output
branch we get to a very similar result, and more smoothly.
Table II summarizes the objective evaluation for this fine-
tuning, getting a good result with respect to the single output
model of F3 when only the last layer is trained on top of the
shared parts of the model. The error values are quite higher
in comparison with the previous ones (F1,M1), because this
speaker was taken from an expressive subset of data, being it
quite different from that of F1 and M1. Also a preliminary
listening test suggested that the adaptation sounded close to
the original speaker, thus validating this approach.

TABLE 11
OBJECTIVE EVALUATION FOR F3 AS AN ADAPTATION SUBJECT. FULL: ALL
LAYERS ARE FINE-TUNED. FROZEN: ONLY NEW OUTPUT BRANCH IS

FINE-TUNED.
Model MCDI[dB] RMSE FO[Hz] UV[%]
F3 alone 8.11 28.07 9.00
F3 fine-tuned full 100% data 7.96 26.96 7.74
F3 fine-tuned frozen 100% data 7.90 26.44 6.73

VI. CONCLUSIONS

In this work we have implemented an acoustic mapping
architecture based on RNN-LSTM layers to handle many
speakers simultaneously. We wanted to study the effect of
mixing many speakers inside the same model. The results
suggest that mixing the first linguistic mappings is useful to
capture some patterns that can be included in others’ styles,
speed, phoneme combinations, etc.

We have also worked in a first speaker adaptation approach,
where we just need to insert another output branch on top
of the pre-trained system and fine-tune it without modifying
the whole structure, thus preserving the multiple output base
model and lowering the footprint in memory to get a new
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speaker model. This approach worked better than training the
new speaker in an isolated way.
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