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ABSTRACT

In this work, we consider the problem of multi-pitch estima-
tion using sparse heuristics and convex modeling. In gen-
eral, this is a difficult non-linear optimization problem, as the
frequencies belonging to one pitch often overlap the frequen-
cies belonging to other pitches, thereby causing ambiguity be-
tween pitches with similar frequency content. The problem is
further complicated by the fact that the number of pitches is
typically not known. In this work, we propose a sparse mod-
eling framework using a generalized chroma representation in
order to remove redundancy and lower the dictionary’s block-
coherency. The found chroma estimates are then used to solve
a small convex problem, whereby spectral smoothness is en-
forced, resulting in the corresponding pitch estimates. Com-
pared with previously published sparse approaches, the result-
ing algorithm reduces the computational complexity of each
iteration, as well as speeding up the overall convergence.

Index Terms— multi-pitch estimation, group lasso, data-
adaptive dictionary, generalized chroma features

1. INTRODUCTION

Fundamental frequency estimation of sources consisting of
harmonically related sinusoids is a problem frequently aris-
ing in areas such as audio processing, non-destructive testing,
and biomedical modeling. For example, correctly determin-
ing the pitches present in a signal is a fundamental building
block in many music information retrieval applications, such
as automatic music transcription and genre classification [1].
However, pitch estimation for multi-pitch signals is a difficult
problem. Non-parametric methods, such as autocorrelation-
based methods (see, e.g., [2] and references therein), gen-
erally suffer from the drawback of being unable to distin-
guish between the fundamental pitch period and multiples of
it. Parametric estimators, on the other hand, are more robust
to such issues (see, e.g. [3]), but rely heavily on accurate a
priori model order information of both the number of pitches
present and the number of harmonic overtones for each pitch.
Also, semi-parametric methods using sparse representations
have been successfully implemented, such as in [4], where
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matching pursuit is used for single pitch estimation. For mul-
tiple pitches, the use of sparse reconstruction algorithms al-
low for estimators not requiring explicit knowledge of the
number of sources or their harmonics (see, e.g., [5–7]). In
these works, the necessary model order selections are instead
formed via suitably chosen tuning parameters, indicating how
appropriate a given pitch candidate is to be present in the sig-
nal. Typically, such parameters are set using some simple
heuristics or via cross-validation, although some efforts have
been made to formulate automatic tuning schemes as well [7].
One common difficulty of these methods is that of sub- and
super-octave errors, i.e., the case when a 2n multiple of the
fundamental, f0, is selected in place of the true fundamental,
for some n ∈ Z. In order to avoid these problems, different
forms of group penalties have been proposed, as discussed
further below, typically increasing the number of tuning pa-
rameters, thereby making the suitable selection of such pa-
rameters more difficult. In this work, we strive to improve
upon our earlier efforts by reducing the required computa-
tional complexity of the resulting algorithm, while also in-
troducing a self-regularizing scheme for the selection of the
necessary tuning parameters. This is done by introducing a
generalized chroma representation allowing suitable chroma
candidates to be selected from a small data-adaptive dictio-
nary, yielding a notable reduction in the problem size, as well
as an improvement of the convergence speed due to an effi-
cient re-parametrization. The found chroma candidates are
then used to form the resulting pitch estimates via a further
optimization step aimed at finding the appropriate octave of
the found chroma candidates.

2. MULTI-PITCH ESTIMATION USING
GENERALIZED CHROMAS

Consider N samples of a complex-valued1 signal consisting
of K sources, with each source being formed by harmonically
related sinusoidal components, such that the signal may be
well modeled as

x(t) =
K∑
k=1

Lk∑
`=1

ak,`e
i2πfk`t (1)

1For notational and computational simplicity, we here consider the
discrete-time analytic signal of any real-valued measured signal.
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Fig. 1. Pitch recovery rate for the PEACH and ESACF al-
gorithms, for a varying number of pitches. Here, ESACF has
been given oracle order information of the number of sources.

where fk and ak,l denote the k:th normalized fundamental
frequency and the complex valued amplitude for the `:th har-
monic in the k:th pitch, respectively, and with Lk denoting
the number of harmonics of the k:th source. In this work,
we strive to form estimates of the fundamental frequencies
present in the signal, when the signal is measured in the pres-
ence of other signals and noise, here jointly denoted e(t), such
that the measured signal is y(t) = x(t) + e(t), with e(t) as-
sumed to be reasonably well modeled as a white, circularly
symmetric, Gaussian noise. Typically, both the number of
sources, K, and the number of harmonics for each source,
Lk are unknown, and may vary noticeably over the measured
signal. It is also very common, for instance in audio signals,
that some of the overtones for one source overlap with those
of another source, complicating the problem further. Finally,
the estimates should avoid making the above noted sub- and
super octave errors, typically by assuming that the spectral
envelope of the sources’ harmonics are smooth, such that ad-
jacent harmonics are of comparable magnitude [8].

In order to form the sought pitch estimates, we introduce
a sparse reconstruction framework, forming an over-complete
dictionary of P � K pitch candidates, such that a small
subset of these candidates well approximates (1). To allow
for an unknown number of overtones, Lk, ∀k, we further let
Lmax ≥ maxk Lk be an upper bound for the number of har-
monics in each pitch, allowing (1) to be well approximated
as

x(t) ≈ xΨ(t) ,
P∑
p=1

Lmax∑
`=1

ap,`e
i2πfp`t (2)

where Ψ denotes the set of candidate amplitudes, i.e.,

Ψ =
{
Ψf1 , . . . ,ΨfP

}
(3)

Ψfk =
{
ak,1, . . . , ak,Lmax

}
(4)

This formulation allows the pitch estimates to be sought as
the set of candidate pitches minimizing

min
Ψ

1

2

N∑
t=1

|y(t)− xΨ(t)|2 + λ

P∑
p=1

√√√√Lmax∑
`=1

|ap,`|2 (5)
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Fig. 2. Reduction in dictionary size and in the required com-
putation time when using the data adaptive pruning scheme,
for a varying number of pitches.

where λ sets the balance between residual fit and the solution
assumptions being promoted.

By analyzing the Karush-Kuhn-Tucker condition for (5),
one may note that due to the square root in the `2-norm, it is
preferable to cluster components together rather than spread-
ing them out to different groups [9]. Regrettably, the solution
in (5) does not resolve the sub- and super octave problem,
nor does it prevent the occurrence of elements with zero am-
plitudes within each active group. As proposed in [5], these
issues may be incorporated in the minimization by includ-
ing further penalties. However, such an extension will also
require the need of setting the corresponding tuning param-
eters, causing a large increase in computational cost for the
cross-validation step.

2.1. A generalized chroma representation

As an alternative way of forming the pitch estimates, we here
propose the use of a generalized chroma representation. We
group pitches together in chromas, such that each chroma col-
lects the pitches that have a largely overlapping frequency
content, i.e., the pitches for which the ambiguity problem is
the worst. Then, in a post-processing step further detailed
below, the most suitable pitches are selected from the found
chromas. Let [fmin, fmax) denote the range of considered
fundamental frequencies, chosen somewhere in the interval
[fs/N, fs/2], where fs/2 corresponds to the Nyquist frequency.
Each candidate fundamental frequencies may then be expressed
as

fp = fmin2
p/Q, p = 0, . . . , P − 1 (6)

where Q denotes the chroma resolution, stating the number
of grid points in a doubling interval [f, 2f), and where P =
bQ log2(fmax/fmin)c is the number of candidate pitches, with
b·c denoting the truncation operator. We denote the lowest
frequency in each generalized chroma group the chroma fre-
quency, all of which are contained within [fmin, 2fmin). Thus,
p = c/Q + m, with c = pmodQ and m = bp/Qc, where
xmod y denotes the remainder of x after division with y,
yielding the chroma indices c = 0, . . . , Q − 1, with as many
octaves,m, as will fit for fp ∈ [fc, fmax), allowing the chroma

2016 24th European Signal Processing Conference (EUSIPCO)

1094



Frames
100 200 300 400 500 600 700 800 900 1000

P
it

c
h

 f
re

q
u

e
n

c
y
 (

H
z
)

0

100

200

300

400

500

600

700

800

900

1000

1100

ESACF
violin
clarinet
saxophone
bassoon

Fig. 3. Pitch tracks produced by ESACF when applied to a 30
second excerpt of J. S. Bach’s Für deinen Thron, performed
by a violin, a clarinet, a saxophone, and a bassoon.

frequency to be expressed as fc = fmin2
c/Q. This reformu-

lation allows (2) to be expressed as

xΨ(t) ,
Q−1∑
c=0

∑
`∈Ĩc

ac,`e
i2πfc`t (7)

where the set of harmonics for all octaves in the chroma is
denoted

Ĩc =
{
1 · 2m, 2 · 2m, . . . , Lmax · 2m

}
m=0,...,Mc−1

(8)

with Mc being the number of octaves considered in the c:th
chroma group. By then estimating Ψ using (5), with xΨ(t)
formed as in (7), the frequency content of the signal is clus-
tered into a few chroma groups, from which, as we show be-
low, the corresponding pitches can be readily found. It is
worth noting that by using (7), we collect all the highly co-
herent pitches, i.e., the octaves, within the same group, and
thereby reduce the block-coherence of the dictionary. As we
initially only strive to find the active chromas in the signal,
we may thus restrict our attention to only the subset Ic ⊂ Ĩc,
containing only the unique harmonics for the c:th chroma,
thereby reducing the number of parameters per chroma by
almost a factor 2, as well as increasing the convergence speed
and estimation performance due to the resulting reduced dic-
tionary coherence (see also, e.g., [10]).

2.2. Chroma to pitch mapping

Using the estimated chromas, we proceed to mapping these to
their suitable octaves, thereby obtaining the desired pitch esti-
mates. This is done by ordering the amplitudes corresponding
to the frequencies of the found chroma harmonics, merging
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Fig. 4. Pitch tracks produced by PEACH when applied to a 30
second excerpt of J. S. Bach’s Für deinen Thron, performed
by a violin, a clarinet, a saxophone, and a bassoon.

any cluster of amplitudes with frequencies that are too closely
spaced into a single component (with frequency equal to the
mean of each such cluster); this is done to remedy the power
leakage into false chromas that can occur due to the limited
frequency resolution and off-grid effects. As the expected res-
olution of the lasso is of the order of fs/5N [11], all compo-
nents with frequencies within this limit are thus combined to a
single component, with an amplitude equal to the sum of the
merged components. The resulting set of amplitudes, {di},
with corresponding frequencies {fi}, will thereby avoid the
spectral leakage that may be expected by the overlapping, or
closely overlapping, harmonics of the different sources. Intro-
ducing bp,` , |ap,`|, the octaves are then found as the solution
to the convex optimization problem

min
{bp,`},∀p,`

1

2

J∑
i=1

∣∣∣∣|di| − ∑
{p,`}∈Ji

bp,`

∣∣∣∣2

+ κ
P∑
p=1

Lmax+1∑
`=1

∣∣∣∣bp,` − bp,`−1∣∣∣∣ (9)

where bp,0 = bp,Lmax+1 , 0,∀p, and Ji is the set of pairs
{p, `} which fulfill

|fmin2
p/Q`− fi| ≤ fs/5N (10)

The minimization (9) is thus formed such that the found chro-
mas explain the spectral peaks as well as possible, while still
promoting solutions where the harmonics are spectrally smooth.
Here, we set κ = 0.1 · 2maxi(|ai|), which corresponds to
only accepting a pitch with spectrally smooth magnitudes if
its largest magnitude is at least 10% of the largest amplitude
cluster.
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2.3. Implementation

As the proposed minimization step in (5) is convex, it may be
solved using one of the many freely available interior point
methods, such as, e.g., SeDuMi [12] and SDPT3 [13]. Alter-
natively, computationally more efficient methods may be de-
rived, reminiscent to those based on the ADMM introduced
in, e.g., [5,6]. Such methods will require somewhere between
O
(
(PLmax)

2
)

and O
(
(PLmax)

3
)

operations, depending on
the problem [14]. Even though a single such optimization is
quickly solved, the repeated evaluation required for select an
appropriate λ using cross-validation quickly becomes com-
putationally cumbersome. In this section, we therefore pro-
ceed to introduce an efficient implementation scheme that first
reduce the size of the optimization problem, thereby speed-
ing up the chroma estimation, and then efficiently update the
found solution in order to form the cross-validation using the
earlier found solution.

As the estimation problem in (5) is posed, it is at least
K/P -sparse, and so we propose to reduce the number of com-
ponents in the dictionary by pruning frequencies which likely
have zero amplitude. In order to do so, we proceed to de-
termine the total number of dominant frequency components
in the signal, not distinguishing between sources or impos-
ing any pitch structure. This may be done is various way,
see, e.g., [15, 16]. Here, we use the well-known BIC rule for
complex-valued sinusoids [15], selecting the total number of
sinusoids, Ĵ , as

Ĵ = argmin
j

BIC(j) , 2N log σ2
j + (5j + 1) logN (11)

where σ2
j is the residual variance when assuming that the sig-

nal consist of j sinusoids. To form the residual variance for
each assumed order, we here use the MUSIC algorithm and
solve for the unknown amplitudes using least squares (see,
e.g., [17]). We then prune all harmonics in Ic corresponding
to a frequency which lie further away than fj2±δ/Q from the
j:th frequency, for any of the Ĵ frequencies found. For δ = 2,
this corresponds to a large reduction in the number of compo-
nents in the dictionary, typically by factor 101 to 102, which
is illustrated in Figure 2.

We proceed to determine a suitable regularization param-
eter, λ, required to form (5), using an R-fold cross-validation
over a set of S potential candidates λ ∈ (0, λmax], where the
validation is initiated using the largest value first, and then
evaluated over the decreasing parameter values sequentially.
Here,

λmax = max
c

√√√√√∑
`∈Ic

∣∣∣∣∣
N∑
t=1

y(t)e−i2πfc`t

∣∣∣∣∣
2

(12)

corresponds to the level of regularization where the entire so-
lution becomes zero. As the main cost of the ADMM solver is
to factorize and invert the dictionary matrix, this is performed

Algorithm 1 The proposed PEACH algorithm
1: Create a generalized chroma dictionary and remove non-

unique elements within each chroma
2: Find the number of frequencies in the signal using BIC,

and estimate their locations
3: Remove all elements from the dictionary not being close

to any found frequencies
4: for all R folds of cross-validation scheme do
5: Factorize the dictionary, invert, and store
6: Initiate estimation using a zero chroma solution
7: for all candidate λ in the regularization path do
8: Load inverted dictionary and latest chroma solution
9: Do sparse chroma estimation at current λ and fold r

10: end for
11: end for
12: Map active chroma to pitches
13: return pitch frequency estimates

only once prior to the cross-validation, which is then warm-
started for each new λ using the latest solution, as a small
change in λ will not change the solution much. Thus, the
lasso estimation for the entire path of λ values may be done
at approximately the same cost as for a single λ [18]. The
resulting Pitch Estimation using Adaptive Chroma Heuristics
(PEACH) algorithm is summarized in Algorithm 1.

3. NUMERICAL VALIDATION

In this section, we evaluate the efficiency of the proposed
method using both synthetic and real data. Initially, we eval-
uate the proposed method on a 30 ms simulated signal consti-
tuted by 1 to 6 pitches, sampled at 44.1 kHz. In each simula-
tion, every pitch frequency was drawn uniformly on the inter-
val [50, 1200] Hz, with each pitch containing (a uniform dis-
tribution of) 7 to 10 harmonics. Figure 1 shows the pitch re-
covery rate (PRR) for the PEACH algorithm and the ESACF
estimator [2], clearly showing a preferred performance from
the proposed algorithm. Here, each octave has been divided
into Q = 96 chromas, we use R = 10 fold cross-validation for
λ, and the PRR has been defined as the fraction of the simula-
tions in which the correct number of pitches was found and
where the estimated fundamental frequencies differed with
less than 2 grid points, i.e., 1/4

12 of an octave, from the ground
truth. These results have been obtained using 500 Monte-
Carlo simulations for each number of pitches, with both meth-
ods assuming a maximum harmonic order Lmax = 15 for each
source. Here, ESACF has been allowed oracle information of
the number of sources present, whereas PEACH has deter-
mined this as part of the estimation procedure.

Proceeding, we evaluate the discussed algorithms on real
audio, using a recording of J. S. Bach’s Für deinen Thron,
performed by a violin, a clarinet, a saxophone, and a bas-
soon. The recording was taken from the Bach10 dataset [19].
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PEACH ESACF
Accuracy 0.492 0.353
Precision 0.722 0.562

Recall 0.607 0.486

Table 1. Performance measures for the PEACH and ESACF
algorithms, when evaluated on J. S. Bach’s Für deinen Thron.

The signal was sampled at 44.1 kHz, then decimated to 22.05
kHz, and divided into frames of length 30 ms. As before,
we compare the performance of PEACH to that of ESACF,
with both algorithms being given the maximum harmonic or-
der Lmax = 10, and ESACF oracle information of the num-
ber of pitches in each processed frame. Figures 3 and 4 show
pitch tracks obtained using PEACH and ESACF, respectively,
together with the ground truth estimates of each instrument’s
pitch frequency, obtained by applying YIN [20] to each single-
source channel. As can be seen, PEACH produces consider-
ably more consistent pitch estimates than ESACF, which has
a tendency to erroneously pick sub-octaves instead of present
pitches. Thereby, ESACF mostly misses the high-pitched vi-
olin part of the music piece, whereas PEACH tracks the vi-
olin quite accurately. From Figures 3 and 4, it can be seen
that both algorithms have trouble with estimating the pitch
frequency of the clarinet. This is caused by the clarinet’s har-
monic structure; most of the power is concentrated to the first
harmonic, making it susceptible to being picked up by one of
the other pitches. Performance measures, as defined in [21],
are presented in Table 1, confirming the superior performance
of the proposed PEACH algorithm.
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