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Abstract—The goal of the study is to predict acoustic features
of expressive speech from semantic vector space representations.
Though a lot of successful work was invested in expressiveness
analysis and prediction, the results often involve manual labeling,
or indirect prediction evaluation such as speech synthesis. The
proposed analysis aims at direct acoustic feature prediction and
comparison to original acoustic features from an audiobook.
The audiobook is mapped in a semantic vector space. A set
of acoustic features is extracted from the same utterances,
involving iVectors trained on MFCC and F0 basis. Two regression
models are trained with the semantic coordinates, DNNs and a
baseline CART. Later, semantic and acoustic context features
are combined for the prediction. The prediction is achieved
successfully using the DNNs. A closer analysis shows that the
prediction works best for larger utterances or utterances with
specific contexts, and worst for general short utterances and
proper names.

I. INTRODUCTION

It seems obvious that there is expressiveness, i.e., emotions,
attitudes, states of mind, moods, etc., codified in plain written
text. If someone reads a book aloud, and somehow interprets
the characters and the situations of the book, she or he will
read them expressively, and normally, that expressiveness will
be coherent to the people listening to the reader. The goal
of this work is to determine whether expressiveness can be
extracted from plain text and be represented as an acoustic
term or descriptor. A book can have different characters, i.e.,
speakers, with a lot of different situations that have to be taken
into account when analyzing expressiveness. Generalizing
this claim it can be said that practically every discourse or
conversation, no matter if in real life or as an interpretation,
will codify information about the speaker, her/his emotions,
social and cultural conditions, state of mind, state of health
etc. It is very difficult to find a common term that would take
into account all these things.

In general there have been different approaches to expres-
sion (and speaker) analysis in the literature: from the acoustic
side, from the text side, and a mixture of both. For example
[23] uses a set of 276 acoustic features to classify seven
basic emotions from speech. A different approach is where
emotions are not classified as discrete states, but rather points
in a continuous space, for instance as suggested by [10]. In
this framework [14] classifies emotions from speech using i-
vectors. In [26] glottal source parameters are used as acoustic
feature in self organizing feature maps (SOFM) to perform
clustering of expressive speech styles in audiobooks. In [8], [9]
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clustering is also performed on audiobooks, but with a further
step of creating synthetic voices from resulting clusters, in the
latter case also i-vectors are integrated in the clustering.

On the other hand, text and linguistic information has been
analyzed in order to determine its emotional content. For
example, in [16] basic emotions are predicted from text using
bag-of-words representations. In [25] different knowledge and
corpus-based methods of emotion prediction from text are
compared.

There are also studies that combine linguistic and acoustic
features for emotions in different contexts. For instance, in
[12], [13] emotions are classified in a call-center context using
keywords and prosodic features. In [22] linguistic bag-of-
words representations are combined with acoustic features to
predict basic emotions. In [21] also bag-of-words representa-
tions are used on the text side; these are mapped to continuous
emotion representations in a three-dimensional space, as pro-
posed in [10]. For the evaluation a set of acoustic features
is used to predict continuous emotion coordinates. In [3] no
labels are predicted at all. Linguistic vector representations are
directly mapped to CAT model weights, as described in [4].

In this work the goal is to analyze the expressive information
encoded in plain text. As argued above, abstract labels are
rather difficult to formulate since the expressive acoustic
information is very variable. The goal is to predict from vector
space representations of text directly acoustic parameters that
are useful to represent expressiveness with its full variability.
The acoustic features predicted here could be seen as an
alternative to the continuous expressiveness representation.
They have many more dimensions than three, but on the
other hand the features do not have to be mapped nor labeled
nor learned. They can be extracted directly from an acoustic
database. Once predicted, they can be used for synthesis, but
also for text and discourse analysis. If needed, they can also
be mapped to labels.

The rest of the article is structured in the following way.
Section II describes the general framework of the task and
the databases used in the study. Section III presents the
linguistic and acoustic features used for the prediction. Section
IV presents several proposed regression models. Section V
describes the experimental design and section VI shows the
results of the experiments. Finally, section VII draws the final
conclusion.
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Fig. 1. Prediction system framework including acoustic features.

II. FRAMEWORK

Figure 1 shows the general framework of the prediction
method.

The first approach proposed in this work uses only linguistic
features to predict acoustic feature vectors. The features used
for the prediction are described in detail in section III.

In the first step, a semantic vector space model (SVSM)
is constructed. Basically, the SVSM is a bag-of-words model
represented as a continuous semantic space. It allows to project
utterances into it and extract a set of coordinates for each
utterance, 600 in this case. Section III describes in more detail
the implementation of the SVSM used in this work.

The semantic vector representation reflects semantic knowl-
edge of the text, where semantically similar concepts tend to
occur close to each other in the space. This type of vector
representation is used for text classification and information
retrieval, for instance [1], [27] have used semantic vector
representations for data selection for speech synthesis training.

Then, an expressive corpus is projected into the semantic
vector space, such that each utterance of the semantic corpus
can be described as a unique coordinate vector. At the same
time, a set of acoustic features is extracted for each utterance
from the expressive corpus that has been projected into the
SVSM. In the next step, a regression model is trained to
predict the acoustic features from the semantic coordinates.
The prediction is designed to predict sets of utterances, such
as paragraphs, so context information can be included in the
predictor vectors.

The second framework includes past acoustic features in
the predictor vectors. Each predictor vector includes, besides
the semantic coordinates, the acoustic vector predicted for
the previous utterance, i.e., the acoustic left context of the
utterance. The first utterance has no left context, so a default
acoustic vector is used as the left context of the first utterance.
The default vector is extracted from a neutral phrase of the
corpus.

A. Databases

The text database used for training of the SVSM is the
Spanish portion of the Wikicorpus, containing 120 million
words [19].

The acoustic database is an audiobook of 8.8 hours of du-
ration, segmented on the sentence level. Some utterances that
contained stuttering, reading errors, or noise imitations by the
reader were removed, resulting in a total of 7903 utterances.
The bad utterances have been identified partly by automatic
tools and partly by manual revision. The segmentation was
done using Ogmios speech analysis tools [2].

III. FEATURES

Since the framework of the study relies on an audiobook
database, there is a set of conditions that should be fulfilled
in order to optimally codify the linguistic and the acoustic
representations. Eventually, the expression prediction is carried
out for large text instances, such as paragraphs. So the context
of each utterance should be taken into account. The second
point is that the audiobook in question, as books usually
do, contains many characters, and although all characters
are being imitated by the same reader, the ways how they
express themselves are very different. For example, anger will
probably be expressed very differently by a giant than by a
witch. So we need acoustic features that would represent the
different characters as different speakers.

A. Linguistic Features

The linguistic features are coordinates of corpus utterances
mapped into the semantic vector space model (SVSM). The
SVSM is trained using the skip-gram method [15] imple-
mented in the word2vec package [28], resulting in a 600
dimensional vector space. The number of dimensions has
been determined experimentally to provide best results under
acceptable training and execution time conditions, though
surely there is space for improvement. One difference to
most semantic vector space realization is that in this work
the function words have not been removed. The decision is
inspired by studies presented in [17] and tested in previous
studies (unpublished) on semantic representations with and
without function words, where best results were achieved
including the stop words.

The linguistic feature vector is composed of three parts.
The utterance in question, the left and the right contexts are
projected into the SVSM and the coordinates are extracted,
1800 totally since the utterance and the context vectors have
the length 600 each. The context on the left and on the right
is composed of the next three words. The amount of words
to take into account has been determined experimentally, the
performance declining from the fourth word on. The reason
might be that the context becomes too specific and moves
away in the semantic space pushed by the words farther away
from the sentence in question.

B. Acoustic Features

The acoustic features aim to represent expressiveness, not
phonetic or segmental information, so each feature used in this
work is suprasegmental, accounting for the whole sentence.
Of course, the suprasegmental features, such as pitch, or
rhythm, will also partly codify syntactic and other information.
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Nevertheless, a previous study in [9] has shown that the feature
set used in this work is useful to represent expressiveness.

Since the audiobook context implies not only the presence
of different expressions, but also of different speakers, though
only imitated by the reader, it is plausible to imply that acous-
tic features should account for the different speakers. A study
conducted in [9] shows a significant performance improvement
by including i-vectors as a feature for unsupervised clustering
of an audiobook. Also in [14] i-vectors already have been used
for emotion recognition.

i-vectors represent speech in a low-dimensional total vari-
ability subspace, which leads to a representation that is inde-
pendent of the different sources of variability such as speaker,
channel, noise, etc.

First, acoustic features are extracted from the waveform;
in this work, 40 Mel-frequency cepstral coefficients and FO
values are used. Before extracting the i-vectors, a Universal
Background Model (UBM) and the total variability matrix
are trained as described in [20] and [11], respectively. In
each case, the whole corpus was used for the training. The
total variability matrix must be trained using audio segments
that are homogeneous according to the speaker, channel and
expressiveness. So silence was removed from the segments.
Once the speech segments are obtained, Baum-Welch statistics
are extracted using the UBM, which are used to obtain the
total variability matrix that defines a total variability space, in
which the speech segments are represented by a vector of total
factors, namely i-vector [5].

Traditionally, i-vectors are calculated from MFCCs. Since
prosody features are known to codify a significant amount
of expressive information, in this work i-vectors are also
calculated from FO. Additionally syllable and silence rates,
means, variance and medians of durations are added to the
acoustic vectors. In result, the acoustic feature vectors are
composed of 600 dimensional i-vectors trained from MFCCs,
12 dimensional i-vectors trained from FO, and 8 dimensional
vectors with syllable and silence statistics, 620 dimensions
in total. The MFCCs and FO features were extracted using
AHOCoder [7]. The syllable and silence duration from the
Ogmios speech analysis tools [2], and the i-vectors using the
Kaldi software [18].

IV. REGRESSION MODELS

Two different regression models were used to predict the
acoustic feature vectors. The baseline model was the Classifi-
cation and Regression Trees (CART). A single tree was trained
for each acoustic dimension.

Additionally, a Deep Neural Network (DNN) [6] was im-
plemented to predict the feature vectors. The DNN is made
of a stack of feed forward (Dense) layers, where each layer
performs a projection followed by a nonlinearity, such that:

h=g(W-x+b) (1)

where W is the weights matrix, x is an input vector of
features, b is the vector of biases and g is an element-
wise non-linearity, which actually gives the DNN prediction

capacity. There are several intermediate (hidden) layers, and
in between, Dropouts [24] of 0.5 are applied to lower any
possible over-fitting effect. At the output of the network a
tanh activation function is used, so the output features are
normalized between [—1, 1].

Figure 2 shows the general architecture of DNNs used in
this work. After several experiments the best network design
turns out to be a bottleneck design. Since the entrance layer has
a rather larger number of neurons, the first hidden layer is also
relatively large (1024 in the case of only semantic coordinates,
1500 for the semantic and acoustic combination). The next
layer shrinks down to 256 neurons. There are several hidden
layers with this number of neurons, which is then increased to
512, and to 620 in the output layer. In the case of the semantic
prediction best results were achieved with 10 hidden layers. In
the case of the semantic and acoustic combination the number
of hidden layers is 5.

/" semantic
Vector input
Ir/ =Y

Acoustic \\.‘
Bottleneck Vector output |

Design

Fig. 2. DNN framework.

V. EXPERIMENTAL DESIGN

For the experiment, first the correspondent models were
trained. The systems which included the acoustic context were
trained using the acoustic features of the previous utterances.
In the prediction, the previously predicted feature vector was
used for the next utterance. Four excerpts from the audiobook
were selected for the evaluation, a total of 106 utterances.
The test set was excluded from training. All test utterances
and their context were projected into the SVSM obtaining
the semantic coordinates. Then acoustic coordinates were
predicted from the semantics for each of the four experimental
conditions: (1) using CART with only semantics; (2) CART
combined with acoustics; (3) DNNs with semantics only and
(4) DNNs combined with acoustics.

The predicted acoustic feature vectors were compared to the
original feature vectors for the utterances extracted from the
corpus measuring the Euclidean distance, as in:
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TABLE I
DISTANCE RESULTS. MEANS AND VARIANCES OF DISTANCES TO THE
ORIGINAL ACOUSTIC FEATURE VECTORS.

’ H CART.sem | CART.acu | DNN.sem | DNN.acu ‘ rand ‘
MEAN 2.44 2.42 1.89 1.89 2.69
VAR 0.51 0.37 0.38 0.38 0.51
(2)

where p and q are the vectors to compare.

As a reference for the distance measure, the same test set
was randomized and the distances were compared between
the original and the shuffled vectors. Also, a closer analysis
of distances between the original and the predicted vectors is
conducted.

VI. RESULTS

Table I shows the results for the distance measures between
the predicted feature vectors and the original feature vectors, in
comparison to the distance of the original vectors to random-
ized original vectors. ANOVA is used to test the significance
of the difference between these distances. Table II shows the
ANOVA F-values for the distances.

Clearly, DNNs have produced predictions that significantly
differ from random. CART did a slightly better prediction
including the left acoustic context in the predictor vectors,
reflected in the distance variance. However, looking at the
ANOVA F values, although the F' values are higher than the
critical F' value, the p values for the predictions with CART
are 0.003 and 0.006, for the predictions with only semantic
vectors and including the acoustics, respectively. So, the CART
prediction is probably not significantly better in comparison to
the shuffled data.

Between CARTSs and DNNGs, there is a significant difference
in performance. However, combining semantic and acoustic
features for the prediction did not result in any significant
improvement.

TABLE II
ANOVA RESULTS BETWEEN THE FOUR CONDITIONS AND RANDOM.
a = 0.05, CRITICAL F' = 3.8861. VALUES MARKED WITH * HAVE A p
VALUE ABOVE 0.0025

H CART.sem | CART.acu | DNN.sem | DNN.acu ‘
rand 7.852% 8.900* 76.897 76.908
CART.sem - 0.044 43.551 43.561
CART.acu - - 40.520 40.530
DNN.sem - - - 0.000

Figure 3 shows the distance plot of distances between the
original acoustic vectors and the predicted vectors, for the four
conditions, and the 106 utterances. The lower the line, the
better is the prediction. The DNN predictions with semantics

alone and with the combination with the acoustics are so
similar that the lines practically overlap.

It can be observed that for some utterances the prediction
is worse than for others. There are some peaks of larger
distances, especially around the utterances 8, 36, 63 and
in the area between 66 and 80. The utterance 8 is just a
“yes”, so there is not much expressive information encoded,
the utterance 36 is a proper name, also difficult to relate to
prominent expressiveness, at least without taking into account
larger context or world knowledge. The utterance 63 just says
“exclaims”, with also very little context (“perfect” on the left
and “fo bring your” on the right). The area between 66 and
80 is a conversation in very general terms, including phrases
like “yes, please”, “hello”, “he said” and some more.

CART.zem
CART.acu

DNN.sem ——
DNN.acu

45

CART.acu
| CART.sem

0 20 40 60 80 100 120

Fig. 3. Euclidean distance plot of the predicted to the original distances for
the 106 utterances.

Possibly, rather large utterances codify more expressive
information than short ones. Anyway, it is clear that rea-
sonable prediction is truly possible for a reasonable portion
of utterances, and that the deep neural networks show better
performance for given task.

VII. SUMMARY AND CONCLUSIONS

The present study had the goal to analyze if expressiveness,
in acoustic terms, can be predicted from plain text. For this
task, each utterance of an audiobook was projected into a
semantic vector space, and for each utterance three left and
right context words, a 1800 dimensional set of coordinates was
extracted. At the same time, for the same utterances acoustic
feature vectors were computed. The feature vectors included
i-vectors trained from MFCCs and from FO, in order to assure
that speaker and expressive information is well represented
in the feature vectors. Excluding a test set, two types of
regression models were trained, using CART and DNNs. Each
predictor model was trained with two conditions. First, only
the semantic coordinates were included in the training process
and second, the semantic coordinates were combined with
the acoustic feature vector of the previous utterance, i.e., left
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acoustic context. The prediction output is the acoustic feature
vector for each of the test utterances. An objective evaluation
was conducted to compare the predicted acoustic vectors to
the original ones.

The results showed that the prediction using DNNs is far
better than chance on this difficult task, however the CART
model did not perform so well. Further, the combination of
semantic vectors with the left acoustic context did not result
in any significant improvement.

A more detailed analysis of the distances between the
predicted and the original vectors showed that the prediction
for some utterances worked better than for others. In particular,
short sentences, where the semantics of the sentences had no
clear expressive information, performed worst.

From given results it can be concluded that generally an
expressiveness prediction from plain text is possible, although
with limitations. Clearly, not all utterances codify expressive
information. However, we as humans do know how to express
them adequately in each situation. As seen from the analysis,
the context is probably the clue point of how to provide the
information to the system so the prediction can be improved.
As argued above, blindly increasing the semantic context
around the target utterance is not the solution, but possibly a
finer training is needed is to find out which context is important
in order to correctly predict the expressiveness, and which
is not. Another interesting point, related to the context, if it
is possible to include explicit world knowledge for a given
domain and use it in the prediction.
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