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Abstract—Steered response power (SRP) techniques have been
well appreciated for their robustness and accuracy in estimating
the direction of arrival (DOA) when a single source is active.
However, by increasing the number of sources, the complexity
of the resulting power map increases, making it challenging
to localize the separate sources. In this work, we propose an
efficient 2D histogram processing approach which is applied
on the local DOA estimates, provided by SRP, and reveals the
DOA of multiple audio sources in an iterative fashion. Driven by
the results, we also apply the same methodology to local DOA
estimates of a known subspace method and improve its accuracy.
The performance of the presented algorithms is validated with
numerical simulations and real measurements with a rigid
spherical microphone array in different acoustical conditions:
for multiple audio sources with different angular separations,
various reverberation and signal-to-noise ratio (SNR) values.

I. INTRODUCTION

Direction of arrival (DOA) estimation is required in many
applications, such as spatial filtering and enhancement [1], [2],
and spatial audio reproduction [3]. In three-dimensional (3D)
DOA estimation a wide selection of algorithms is available:
subspace [4], intensity-based [5]–[7] and steered-response-
power (SRP) [8], each of them with different level of complex-
ity. Selecting the appropriate algorithm depends on the latency
and accuracy requirements of the application. Beamforming is
an application where inaccurate DOA estimation may lead to
reduced audio quality, since the beam might be steered in a
noise source instead of the target. Methods such as SRP and
multiple signal classification (MUSIC) can provide accurate
DOA estimates [4], [8].

Steered-response power methods are based on scanning the
sound field with a beamformer. The beamformer is steered in
different directions of interest and the output power is then
calculated. This signifies the SRP function which is utilized
to identify the DOA of active sources. The results of the
SRP can be enhanced by applying a phase transform [9]. SRP
methods have been proposed for robust real-time applications
using a coarse-to-fine search-grid contraction [10] or stochastic
search-grid contraction [11].

In our previous work, [7], we have presented a method for
DOA estimation based on two-dimensional (2D) histograms
processing of selected pseudointensity vector estimates. Mo-
tivated by the effectiveness of our post-processing approach,
in this contribution we study the problem of multiple audio
source localization in the spherical harmonic domain by ap-
plying 2D histogram processing on local DOA estimates of

1) SRP methods using four types of axis-symmetric beam-
formers

2) MUSIC with the direct path dominance test [4],
and we present extensive, comparative results that highlight
the characteristics of each beamformer, e.g., noise robustness
in case of suppressed sidelobes. The 2D histogram of local
DOA estimates experiences lower-complexity compared to
the power map for the SRP methods and compared to the
pseudospectrum for MUSIC. The histogram is then processed
iteratively to obtain the DOAs of multiple sources, achieving
accurate results for the SRP methods and an improvement for
MUSIC.

The paper is organized as follows. In Section II the back-
ground on spherical microphone array processing is presented
briefly. Section III describes the application of 2D histograms
on the DOA estimates provided by spherical harmonic domain
axis-symmetric beamformers and MUSIC. Section IV presents
the experimental setup for evaluation and the results using a
simulated and a real spherical microphone array in reverberant
environments with the presence of multiple speech sources.
Section V presents our conclusions.

II. SPHERICAL MICROPHONE ARRAY PROCESSING

In this section, we briefly review the process of obtaining a
vector which contains the spherical-harmonic domain signals,
s, from a vector of sensor domain signals, x. For a thorough
review of spherical microphone array processing the reader
is referred to [12]. Let us assume a microphone array that
consists of Q microphones positioned at (Ωq, r) = (θq, φq, r).
We define Ω = (θ, φ), where θ denotes elevation angles and φ
azimuthal angles with θ ∈ [−π/2, π/2] and φ ∈ [−π, π] and
r is the radius. The spherical harmonic signals are then ap-
proximated as slm(k, r) ≈

∑Q
q=1 gq(Ωq)xq(k,Ωq, r)Y

∗
lm(Ωq),

where xq(k,Ωq, r) are the separate microphone signals for
frequency k, Y ∗

lm(Ωq) are the complex conjugate spherical
harmonic functions, and gq(Ωq) is selected so that it provides
an accurate approximation of the spherical Fourier transform
[13]. The accuracy of this approximation depends on how
uniformly the microphones are distributed on the surface of
the sphere, the type of the array, the radius r and the frequency
k [14]. By omitting the frequency and radial dependency,
the equalized spherical harmonic signals can be expressed in
matrix form as

s ≈ gqB−1YHx, (1)
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where (H) denotes Hermitian transposition,

x = [x1, x2, . . . , xQ]T ∈ CQ×1 (2)

are the microphone array input signals,

s = [s00, s1−1, s10, s11, . . . , sLL]T ∈ C(L+1)2×1 (3)

are the spherical harmonic signals, gq(Ωq) = 4π
Q , assuming a

uniform distribution of microphones on the surface of a sphere,

B = diag{[b0, b1, b1, b1, . . . , bL]} ∈ C(L+1)2×(L+1)2 (4)

is a diagonal matrix containing the equalization weights that
depends on the array type, whether it is rigid or open, and is
used in (1) to compensate for the effect of the microphone
array [13]. Y ∈ CQ×(L+1)2 is the matrix containing the
spherical harmonics up to order L for the Q microphones

Y(Ωq) =



Y00(Ω1) Y00(Ω2) . . . Y00(Ωq)
Y1−1(Ω1) Y1−1(Ω2) . . . Y1−1(Ωq)
Y10(Ω1) Y10(Ω2) . . . Y10(Ωq)
Y11(Ω1) Y11(Ω2) . . . Y11(Ωq)

...
...

...
...

YLL(Ω1) YLL(Ω2) . . . YLL(Ωq)



T

, (5)

where (T ) denotes transposition. The number of microphones
to reconstruct L independent spherical harmonics signals is
Q ≥ (L+ 1)2 [15].

Axis-symmetric beamforming in the spherical harmonic
domain is performed by simply weighting and summing the
spherical harmonic signals [12]. The single channel output, y,
of the beamformer is

y(Ωl) = [y(Ωl)� sT ]d, (6)

where y(Ωl) ∈ C1×(L+1)2 is a row of the spherical harmonics
matrix (5), � denotes the Hadamard product and d is a vector
of weights defined as

d = [d0, d1, d1, d1, . . . , dL, dL, dL]T ∈ R(L+1)2×1. (7)

Beam steering for rotationally-symmetric beam patterns can be
performed by simply adding a set of multipliers in (6) [16] and
for arbitrary beam patterns it can be performed by Wigner-D
weighting [17] of projection methods [18].

III. MULTIPLE AUDIO SOURCE LOCALIZATION BASED ON
2D HISTOGRAMS

The power map of a beamformer can be provided by the
output of the SRP function, which is defined as the energy of
the beamformer in a grid of directions [8]

Λ(Ωl) = |y(Ωl)|2, (8)

where Ωl = (θl, φl) consists of all the elevation and azimuthal
angles of the search grid. A power map is shown in Fig. 1
(top left) for six simultaneously active audio sources. The
peaks in the power map indicate the DOAs of the audio
sources. Aiming at enhancing the presence of the DOAs in
such 2D representations, we propose to first obtain single
DOAs from power maps at each time-frequency (TF) point.
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Fig. 1. SRP power map (top left), SRP 2D-histogram (bottom left), MUSIC-
DPD pseudospectrum (top right) and MUSIC-DPD 2D-histogram (bottom
right) snapshots of a scenario with 6 simultaneously active sources at a
simulated environment of RT60=0.3 sec. The pink markers denote the actual
positions of the audio sources

Adopting the W-disjoint orthogonality assumption [19], we
could then identify the highest peak of the power map as the
DOA of the specific TF point which we define as a local DOA.
By collecting all DOAs from the TF points of interest, we
can form 2D histograms which we can process and infer the
azimuthal and elevation angles of multiple sources, assuming
their number to be known a priori. In Section III-A we present
the four types of beamformers which are utilized for the
estimation of the power maps. In Section III-B we describe
the formulation and processing of 2D histograms. In Section
III-C we describe how 2D histograms can be used to improve
the accuracy of the MUSIC algorithm with the direct-path-
dominance test (MUSIC-DPD).

A. Rotationally-symmetric beamformers

The types of axis-symmetric beamformers utilized in the
present work for DOA estimation are:
• A regular beamformer, dr, with unity gains [12]

dr(l) = 1, ∀l = [0, . . . , L]. (9)

• A minimum-sidelobe beamformer, dms, [20]. It smooths the
sidelobes of the regular beamformer and provides complete
sidelobe suppression with the cost of a wider main lobe.
The weights are given by

dms(l) = g0
Γ(L+ 1)Γ(L+ 2)

Γ(L+ 1 + l)Γ(L+ 2 + l)
, (10)

where Γ is the gamma function, and g0 =
√

(2L+1)
(L+1)2 .

• A maximum-energy beamformer, dmaxE, that maximizes the
energy concentration towards the look direction [21], [22]

dmaxE(l) = CPl(E), (11)

where Pl(E) is the lth Legendre polynomial, E the largest
root of PL+1 and C a normalization constant [23].

• A Dolph-Chebyshev beamformer

ddc =
2π

R
PACTx0, (12)
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Fig. 2. Directivity patterns of the axis-symmetric beamformers: regular (top
left), minimum sidelobes (top right), maximum energy (bottom left) and
Dolph-Chebyshev (bottom right).

where P,A,C,T ∈ R(L+1)×(L+1), x0 ∈ R(L+1)×1 and R
are defined as in [12] in (6.66-6.71). The elements of the
vector ddc are re-arranged so that they match (7), where the
same weight is applied to the spherical harmonic signals of
the same order.

The directivity patterns of the aforementioned beamformers
are shown in Fig. 2. The input parameters of the Dolph-
Chebyshev beamformer were: R = 10λ/20 with λ = 30 dB.

B. 2D Histogram processing on SRP map

By estimating the beamformers’ power map and locating
its highest peak index at each TF point, we obtain a local
DOA estimate. We form a 2D histogram from a set of local
DOA estimates in all TF points of interest in a block of
N consecutive time frames. This constant size block slides
one frame each time in order to allow a batch mode DOA
estimation of multiple sources. We process the 2D histogram
in order to extract the final DOA estimates. Our proposed
processing has been previously applied on intensity vector
estimates in [7]. In this work we apply it to beamformer’s
local DOA estimates. In order to enhance the presence of DOA
estimates of a source, we first smooth the 2D histogram by
applying a circularly symmetric window. We have employed
a Gaussian window wA(θ, φ) of zero mean and standard
deviation (std) equal to σA, leading to

hs(θ, φ) =
∑
i

∑
j

h(i, j)wA(θ − i, φ− j), (13)

where w(θ, φ) = 1
2πσ2 e

− 1
2

θ2+φ2

σ2 is the Gaussian window,
h(θ, φ) is the original 2D histogram and hs(θ, φ) is the
smoothed one. We show examples of 2D histograms in Fig. 1
(bottom) where one could easily detect the sources as well
as their contribution to the 2D histogram when compared
to the power map and pseudospectrum (top). In an iterative
fashion we then detect the highest peak of the smoothed
histogram hgs(θ, φ), identify its index as the DOA of a source,
(θg, φg) = arg max

θ,φ
hgs(θ, φ) and remove its contribution from

the histogram, δg = hs(θ, φ)�wC(θ−θg, φ−φg) by applying
a second Gaussian window wC(θ, φ) of zero mean and std
equal to σC until we reach the known number G of sources.

Thus the smoothed histogram at each next iteration would be
hg+1
s (θ, φ) = hgs(θ, φ)− δg .

C. 2D Histogram processing on MUSIC

One of the most well known methods for multiple source
localization is the MUSIC algorithm, which has been recently
formulated in the spherical harmonic domain [4]. The authors
proposed to estimate the narrowband MUSIC pseudospectrum
only in TF points that are identified as dominated by a
single source by the direct-path dominance test. In the afore-
mentioned implementation of MUSIC-DPD algorithm, the
selected incoherent narrowband pseudospectra are averaged
to provide one pseudospectrum, the local peaks of which
reveal the DOAs of the active sources. Our work on 2D
histograms of local DOAs motivated us to modify the MUSIC-
DPD algorithm aiming at improving its accuracy in localizing
multiple sources. We propose to estimate a local DOA as the
index of the highest peak of each narrowband pseudospectrum
at TF points approved by the DPD test. All the local DOAs
for a block of N consecutive time frames are then provided as
input to our 2D histogram processing algorithm as described
in the preceding section III-B. In Fig. 1 we show an example
of the MUSIC pseudospectrum (top right) and the proposed
MUSIC 2D histogram (bottom right).

IV. EVALUATION

The evaluation of the 2D histogram-based multiple DOAs
estimation algorithms, presented in this work, is based on
numerical simulation and real measurements in reverberant
environments. For the numerical simulations a baffled spher-
ical microphone array is simulated with radius r = 4.2 cm,
with 32 microphone capsules arranged on the faces of a
truncated icosahedron. The array’s geometry in the simula-
tions matched the geometry of the measurements array. The
numerical simulations utilized a room impulse response (RIR)
generator for spherical microphone arrays based on the image-
source method [24], [25]. A room of 5.6 × 6.3 × 2.7 m3

was simulated with the same dimensions as the room where
the real measurements took place. The spherical array was
placed in the center of the room, and the sound sources
were placed 1 m away from the center of the array. The
sampling frequency was equal to 48 kHz and the time frame
and FFT size was 2048 samples. We applied 50% overlapping
in time. The beamformers’ order was L = 3. For the specific
array configuration and assuming an SNR of 45 dB the low
frequency limits for processing are 11, 115 and 480 Hz for
orders of 1, 2 and 3 respectively [12]. The scanning area for
the beamformers and the MUSIC pseudospectra comprises
a set of 1002 points on a sphere. The distribution of the
points is defined from a geodesic sphere constructed from
an icosahedron with an iterative process [26]. The windows
used at the histograms processing had std equal to σA = 5◦

and σC = 20◦. The speed of sound was c = 343 m/s while
the frequency range used was 500-3800 Hz to avoid aliasing
phenomena [4]. We have utilized speech files of duration
approximately 7 seconds, with any silent periods removed. The

2016 24th European Signal Processing Conference (EUSIPCO)

1475



2D histograms and the MUSIC pseudospectra have resulted
from 1 second, i.e., N = 46 frames, of data.

As a metric for the evaluation of the algorithms we use the
mean estimation error (MEE) defined as

MEE =
1

NFG

∑
n

∑
g

cos−1
(
vTngv̂ng

)
, (14)

where cos−1
(
vTngv̂ng

)
expresses the angular distance between

the true DOA of the gth active source in the nth frame and
the estimated one. NF is the total number of frames after
subtracting N − 1 frames of the initialization period and G is
the number of active sources, assumed to be known. We note
that the DOA estimation results for the four axis-symmetric
beamformers (see also Section III-A) that we present hereafter
are solely from the proposed 2D DOA histograms processing.
Due to the energy spread of the beamformers, obtaining
multiple sources DOA estimates directly from the power maps
had a significant error and was considered very inaccurate [6].

A. DOA results with simulated room impulse responses

In our first set of simulations, Fig. 3, we plot the MEE
versus the number of active sources in a simulated reverberant
environment of RT60=0.6 sec for SNR={0, 10, 20} dB for
the four different types of beamformers of Section III. We
notice that all four beamformers provide very good results for
medium and high SNR conditions even when the number of
active sources increases. However, their performance degrades
as the SNR decreases with the minimum-sidelobe beamformer
exhibiting the best performance.
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Fig. 3. MEE versus number of sources for RT60 = 0.6 sec and various SNR
conditions for four types of axis-symmetric beamformers.

In Fig. 4 we explore the performance of the MUSIC al-
gorithm when the DOA results from the averaged 2D pseu-
dospectra, denoted as “MUSIC-SH DPD-incoh”, and when
it results from the 2D histograms, denoted as “MUSIC-SH
DPD-2Dhist” (see also Section III-C). It is clear that for high
and moderate SNR values the proposed 2D histogram based
processing exhibits an advantage versus the averaged pseu-
dospectra approach. In low SNR conditions both approaches
fail to provide a reasonable MEE especially when the number
of active sources is increased. We show the performance of
all presented methodologies for various angular separation
values between two sources in a reverberant environment of
RT60=0.4 sec and SNR=20 dB in Fig. 5. All four beamformers
as well as the MUSIC-SH DPD-2Dhist show very low MEE
for all angular separations. As expected, when the sources get
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Fig. 4. MEE versus number of sources for RT60 = 0.6 sec and various SNR
conditions for two approaches of the MUSIC-DPD algorithm

closer the MEE is higher but still in a very reasonable range of
values except for the MUSIC-SH DPD-incoh which exhibits
the highest error.
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Fig. 5. MEE vs angular separation for RT60 = 0.4 sec and SNR=20 dB.

B. DOA results with measured room impulse responses

The real measurements were performed by recording RIRs
with the EigenMike [27] in a listening room with approxi-
mately the same dimensions as in the numerical simulations.
The reverberation time in the recording room was approxi-
mately equal to RT60=0.3 sec. We show our first set of results
in Fig. 6 at the left plot, while at the right we plot a simulated
counterpart. The SNR for both environments was at 45 dB.
The performance of all beamformers is very good - the MEE
is below three degrees in all cases - following similar tendency
between the simulated and real results. In our second set of
results with real RIRs we demonstrate the performance of
the MUSIC-SH DPD-incoh and MUSIC-SH DPD-2Dhist ap-
proaches in Fig. 7 at the left plot with a simulated counterpart
at the right side of the figure, also at SNR=45 dB. The MUSIC-
SH DPD-2Dhist approach outperforms the MUSIC-SH DPD-
incoh for all tested number of sources.

V. CONCLUSION

In this work we proposed a 2D histogram processing ap-
proach which is applied to local DOA estimates for enhanced
DOA estimation of multiple audio sources. We have pre-
sented our 2D histograms processing methodology under four
axis-symmetric beamforming schemes and by enhancing the
DOA estimation of a subspace algorithm, both defined in the
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Fig. 6. MEE versus number of sources for RT60 = 0.3 sec for (a) real and
(b) simulated measurements.
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Fig. 7. MEE versus number of sources for RT60 = 0.3 sec for (a) real and
(b) simulated measurements.

spherical harmonic domain. The evaluation was conducted in
simulated reverberation and different SNR conditions and with
real RIRs for various number of sources, revealing accurate
DOA estimation in all examined scenarios.
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