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Abstract—The approximation of linear time-invariant (LTI)
systems by sampling series is a central task of signal processing.
For the Paley–Wiener space PW1

π of bandlimited signals with
absolutely integrable Fourier transform, it is known that there
exist signals and stable LTI systems such that the canonical
approximation process diverges. In this paper we analyze the
structure of the sets of signals and systems creating divergence
and show that both sets are jointly spaceable, i.e., contain subsets
such that every linear combination of signals and systems from
these subsets, which is not the zero element, leads to divergence.
In signal processing applications the linear structure of the
involved signal spaces is essential. Here, we show that the same
linear structure also holds for the sets of signals and systems
creating divergence.

I. MOTIVATION AND INTRODUCTION

A central problem in signal processing is the approximation
of linear time-invariant (LTI) systems, like the Hilbert trans-
form or the derivative, by sampling series [1], [2], [3], [4],
[5], [6]. For a given bandlimited input signal f and stable LTI
system T , the canonical approximation process is given by

∞∑
k=−∞

f(k)hT (t− k), (1)

where hT = T sinc denotes the response of the system T to
the sinc-function [4, Sec. 4.4]. The convergence of (1) is not
guaranteed and has to be checked from case to case.

In [7], [8] the convergence behavior of (1) was analyzed
for signals in the Paley–Wiener space PW1

π of bandlimited
signals with absolutely integrable Fourier transform. It was
shown that for each t ∈ R there exists a stable LTI system T
and a signal f ∈ PW1

π such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞, (2)

i.e., that the approximation error grows arbitrarily large. How-
ever, it is not clear what structure the sets of signals and
systems creating divergence have. In this paper we will address
this question.

A second approximation process, closely related to (1), is
the mixed-signal representation

∞∑
k=−∞

f(t− k)hT (k). (3)

This work was partly supported by the German Research Foundation (DFG)
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Formally, (3) differs from (1) only in the position of the time
variable t. However, this difference has a significant impact on
how the approximation process can be implemented. In (3), for
a fixed t ∈ R, we need the signal values on the discrete grid
{t − k}k∈Z in order to calculate the system approximation
(Tf)(t). For different t ∈ R we need other signal values.
As t ranges over [0, 1] we need all the signal values f(τ),
τ ∈ R. In the mixed signal representation the signal f is
processed in its analog form, and the necessary operations
like delay, multiplication, and addition, which are typical for
digital circuits, need to be implemented for analog quantities.
As in the case of the approximation process (1), the mixed-
signal process (3) is only useful if we have convergence. In
Section IV we will see that (1) and (3) have exactly the same
convergence behavior for the considered signal space. Hence,
our result for the approximation process (1) is equally true for
the mixed-signal process (3).

A signal space in signal processing is characterized, among
other properties, by its linearity. That is, adding two signals
from the signal space or multiplying a signal from the signal
space with a scalar gives again a signal in the signal space.
The same linear structure also holds for the set of stable LTI
systems. This is important for signal processing applications,
because it allows to compose complex signals and systems out
of elementary and simple building blocks. In addition to the
linear structure, it is also useful to introduce a norm on the
spaces in order to compare the elements of the spaces, i.e.,
signals and systems.

In this paper we study the structure of the sets of signals
and systems creating divergence. Due to the importance of
the signal space structure in signal processing, it would be
interesting to know whether these sets contain subsets which
are signal spaces in the sense that they exhibit a linear
structure. In this case any linear combination of signals or
systems from those subsets, which is not the zero element,
would lead to divergence as well.

Note that it is significantly more difficult to show a linear
structure in the set of signals and systems with divergent
system approximation process, compared to showing a linear
structure in the set of signals and systems with convergent
system approximation process. If we have two signals f1 and
f2, for which (1) converges, it is clear that the sum of both
signals, i.e., f1+f2, is a signal for which we have convergence
as well. Hence, any finite linear combination of signals with
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convergent system approximation process will be a signal
with convergent system approximation process. However, for
divergence this is not true. Given two signals w1 and w2 for
which (1) diverges, we cannot conclude that the sum of both
signals, i.e., w1 +w2, is a signal for which (1) diverges. This
can be easily seen by choosing w1 = f1+g and w2 = f1−g,
where f1 is any signal with convergent system approximation
process and g any signal with divergent system approximation
process. Obviously, for the sum w1 + w2 = 2f1 we do not
have divergence. This shows that the sum of two signals, each
of which leads to divergence, does not necessarily lead to
divergence.

In Section IV we will prove that the sets of signals and
systems creating divergence are spaceable, i.e., contain a
closed infinite dimensional subspace with linear structure. We
will even show that both sets are jointly spaceable in the
sense that there exist two closed infinite dimensional subspaces
Dsig and Dsys, such that for all pairs of signals and systems
(f, T ) ∈ Dsig ×Dsys, f 6≡ 0, T 6≡ 0 , we have divergence as
stated in (2).

II. GENERAL NOTATION

Let f̂ denote the Fourier transform of a function f , where
f̂ is to be understood in the distributional sense. Lp(R),
1 ≤ p < ∞, is the space of all measurable, pth-power
Lebesgue integrable functions on R, with the usual norm ‖ · ‖p,
and L∞(R) the space of all functions for which the essential
supremum norm ‖ · ‖∞ is finite. Lp[t1, t2], 1 ≤ p < ∞,
σ > 0, is the space of all measurable, pth-power Lebesgue
integrable functions on [t1, t2]. C[t1, t2] denotes the space
of all continuous functions on [t1, t2]. For 1 ≤ p ≤ ∞,
PWp

π denotes the Paley-Wiener space of functions f with
a representation f(z) = 1/(2π)

∫ π
−π g(ω) e

izω dω, z ∈ C,
for some g ∈ Lp[−π, π]. If f ∈ PWp

π then g(ω) = f̂(ω).
The norm for PWp

π , 1 ≤ p < ∞, is given by ‖f‖PWp
π
=

(1/(2π)
∫ π
−π|f̂(ω)|

p dω)1/p.
We briefly review some definitions and facts about stable

linear time-invariant (LTI) systems, which will be relevant.
A linear system T : PWp

π → PWp
π , 1 ≤ p ≤ ∞, is

called stable if the operator T is bounded, i.e., if ‖T‖ :=
sup‖f‖PWp

π
≤1‖Tf‖PWp

π
<∞. Furthermore, it is called time-

invariant if (Tf( · − a))(t) = (Tf)(t − a) for all f ∈ PWp
π

and t, a ∈ R.
In this paper we are mainly interested in stable LTI systems

operating on the space PW1
π , i.e., in the case p = 1. By T

we denote the set of stable LTI systems T : PW1
π → PW

1
π ,

and by TC the set of systems T ∈ T with continuous ĥT . The
operator norm of a stable LTI system T is given by ‖T‖ =
‖ĥT ‖L∞[−π,π]. For every stable LTI system T : PW1

π →
PW1

π there exists exactly one function ĥT ∈ L∞[−π, π] such
that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) e

iωt dω, t ∈ R, (4)

for all f ∈ PW1
π . Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW1
π → PW

1
π . Hence, we

can identify stable LTI systems with L∞[−π, π] functions.
By Q : T → L∞[−π, π] we denote the isometric isomorphism
that performs this mapping. We have hT = T sinc, where sinc
denotes the usual sinc-function which is defined by sinc(t) =
sin(πt)/(πt) for t 6= 0 and sinc(t) = 1 for t = 0.
Remark 1. Adding two signals in PW1

π or multiplying a signal
in PW1

π with a scalar gives again a signal in PW1
π . That is

PW1
π is a signal space with linear structure. The same is true

for the space of stable LTI systems T .

III. SPACEABILITY

In the introduction we discussed the importance of linear
structures in signal spaces. For the sets of signals and systems
with convergent approximation process it is easy to show
the linearity. However, for the sets of signals and systems
with divergent approximation process, this is not the case,
and an analysis is much more intricate. In the following we
want to answer the question whether the sets of signals and
systems with divergent approximation process contain infinite
dimensional subspaces, i.e., sets with linear structure.

Lineability and spaceability are two appropriate mathemat-
ical concepts to study the existence of linear structures in
general sets. A subset S of a Banach space X is said to be
lineable if S ∪ {0} contains an infinite dimensional subspace.
A subset S of a Banach space X is said to be spaceable if
S∪{0} contains a closed infinite dimensional subspace of X .
Remark 2. Spaceability is a stronger property than lineability.
Every spaceable set is lineable but not vice-versa.

Both concepts were recently introduced and have been used
for example in [9], [10], [11], [12], In [9] it was proved that
the set of continuous nowhere differentiable functions on R
is lineable. Later, it was shown that the set of continuous
nowhere differentiable functions on C[0, 1] is spaceable [10].
The divergence of Fourier series was analyzed in [12], where it
was shown that the set of functions in L1(∂D), whose Fourier
series diverges everywhere on ∂D is spaceable. Spaceability
and lineability in different setting was further analyzed in
[13], [14], [15], [16]. In [16] spaceability of certain mappings
between sequence spaces was studied, and in [14] spaceability
of Banach spaces of sequences. Lineability of linear spaces
was considered in [15].

IV. MAIN RESULT

Theorem 1. There exist an infinite dimensional closed sub-
space Dsig ⊂ PW1

π and an infinite dimensional closed
subspace Dsys ⊂ TC such that for all f ∈ Dsig, f 6≡ 0, and all
T ∈ Dsys, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞.
Theorem 1 shows that there exist a spaceable set of signals

Dsig ⊂ PW1
π and a spaceable set of stable LTI systems

Dsys ⊂ TC ⊂ T such that the system approximation process
(1) diverges at t = 0 for any pair of signal and system
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(f, T ) ∈ Dsig × Dsys, f 6≡ 0, T 6≡ 0, chosen from the two
sets. In the previous expression, we denoted the zero element
by 0. For the signal space it is the signal f that is identically
zero, i.e., f(t) = 0 for all t ∈ R, and for the system space it is
the LTI system T with ĥT (ω) = 0 for almost all ω ∈ [−π, π].
From the context it will be always clear which zero element
we refer to when writing 0.

Clearly, joint spaceability implies ordinary spaceability.
Further, we have the following two conjectures.

Conjecture 1. Let T ∈ T be a stable LTI system. If there
exists a signal f ∈ PW1

π with

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞, (5)

then the set of signals f ∈ PW1
π with (5) is spaceable.

Conjecture 2. Let f ∈ PW1
π . If there exists a stable LTI

system T ∈ T with

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞, (6)

then the set of stable LTI systems T ∈ T with (6) is spaceable.

Remark 3. Theorem 1 is concerned with the sets of signals and
systems for which we have divergence. As for convergence,
we have the following well-known situation. For all signals
f ∈ PW2

π ⊂ PW
1
π and all systems T ∈ T we have

lim
N→∞

max
t∈R

∣∣∣∣∣(Tf)(t)−
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ = 0,

i.e. we have lineability of the set of input signals which lead to
a convergent system approximation for all stable LTI systems.
Further, for all stable LTI FIR-systems TFIR, i.e., systems T ∈
T with hT (k) 6= 0 for only finitely many k ∈ Z, we have for
all f ∈ PW1

π that

(Tf)(0) =
∞∑

k=−∞

f(k)hTFIR(−k),

because only finitely many summands are non-zero. Therefore,
we also have lineability of the set of systems for which
(Tf)(0) can be represented by a finite sampling series for
all signals in PW1

π .

The divergence of the approximation process (1) for arbi-
trary t 6= 0 follows easily from Theorem 1 and is stated in
the following corollary, the proof of which is given after the
proof of Theorem 1.

Corollary 1. Let t ∈ R be arbitrary but fixed. There exist
an infinite dimensional closed subspace Dsig ⊂ PW1

π and an
infinite dimensional closed subspace Dsys2 ⊂ TC such that for
all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys2, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞.

We have the same result for the mixed-signal representation.

Corollary 2. Let t ∈ R be arbitrary but fixed. There exist an
infinite dimensional closed subspace Dsig2 ⊂ PW1

π and an
infinite dimensional closed subspace Dsys ⊂ TC such that for
all f ∈ Dsig2, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣ =∞.
For the proof of Theorem 1 we need the following lemma,

the proof of which is omitted due to space constraints.

Lemma 1. There exist two sequences of functions {φn}n∈N
and {gn}n∈N with:

1) The functions φn, n ∈ N, are finitely linearly indepen-
dent, {φn}n∈N ⊂ PW1

π , and there exists a constant C1

such that ‖φn‖PW1
π
≤ C1 for all n ∈ N.

2) The functions gn, n ∈ N, are finitely linearly indepen-
dent, {ĝn}n∈N ⊂ C[−π, π], and there exists a constant
C2 such that ‖ĝn‖∞ ≤ C2 for all n ∈ N. Further,
we have gn(k) = 0 for all negative integers k and all
n ∈ N.

3) For all n,m ∈ N there exists a sequences
{Nr(n,m)}r∈N and a constant C3 such that

lim sup
r→∞

∣∣∣∣∣∣
Nr(n,m)∑
k=0

φn(−k)gm(k)

∣∣∣∣∣∣ =∞
and

sup
r∈N

∣∣∣∣∣∣
Nr(n̂,m̂)∑
k=0

φn(−k)gm(k)

∣∣∣∣∣∣ ≤ C3

for all n̂, m̂ ∈ N with (n̂, m̂) 6= (n,m).

Now we are in the position to prove Theorem 1.

Sketch of the proof of Theorem 1. Let {φn}n∈N and {gn}n∈N
be the two sequences of functions from Lemma 1. For n ∈ N
and t ∈ R let

ξ(1)n (t) =
1

2n2C1
φn(t),

h(1)n (t) =
1

2n2C2
gn(t),

and
en(t) =

sin(π(t− 2n))

π(t− 2n)
.

According to Paley’s theorem [17, p. 104], {en}n∈N is a basic
sequence1 in PW1

π . Further, {ên}n∈N is a basic sequence in
L∞[−π, π] [18, p. 247]. Now we consider

ξn(t) = ξ(1)n (t) + en(t)

and
hn(t) = h(1)n (t) + en(t).

1A sequence {fn}n∈N in a Banach space X is a basic sequence in X if
it is a basis for its closed linear span.
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We have ‖e∗n‖PW∞
π

= 1 and ‖ê∗n‖L1[−π,π] = 1. Thus, it
follows that

∞∑
n=1

‖e∗n‖PW∞
π
‖ξn − en‖PW1

π
=

1

2
< 1

and
∞∑
n=1

‖ê∗n‖L1[−π,π]‖ĥn − ên‖C[−π,π] =
1

2
< 1.

Hence, {ξn}n∈N is a basic sequence for PW1
π that is equiv-

alent to {en}n∈N, and {ĥn}n∈N is a basic sequence for
L∞[−π, π] that is equivalent to {ên}n∈N [19, p. 46]. Further,
there exists a constant C4 > 0 such that

C4

( ∞∑
n=1

|an|2
) 1

2

≤

∥∥∥∥∥
∞∑
n=1

anen

∥∥∥∥∥
PW1

π

≤

( ∞∑
n=1

|an|2
) 1

2

.

Let Dsig denote the closure in the PW1
π-norm of the set{

M∑
n=1

anξn : an ∈ R,M ∈ N

}
.

We have f ∈ Dsig if and only if
∑∞
n=1|an|2 <∞. For every

f ∈ Dsig there exists a unique l2-sequence {an}n∈N such that

f =

∞∑
n=1

anξn.

Further let D̂sys1 denote the closure in the C[−π, π]-norm of
the set {

M∑
n=1

bnĥn : bn ∈ R,M ∈ N

}
.

We have ĥ ∈ D̂sys1 if and only if ĥ has a coefficient sequence
{bn}n∈N with

∑∞
n=1|bn| < ∞. The coefficient sequence

defines ĥ uniquely. Clearly, every ĥ uniquely defines a stable
LTI system T = Q−1ĥ. We denote the corresponding space
of LTI systems by Dsys1 = Q−1D̂sys1.

Let f ∈ Dsig, f 6≡ 0, and ĥ ∈ D̂sys1, ĥ 6≡ 0, both be arbitrary
but fixed. Then we have the expansions

f(t) =
∞∑
n=1

an(f)ξn(t), t ∈ R,

and

ĥ(ω) =
∞∑
n=1

bn(h)ĥn(ω), ω ∈ [−π, π].

Let n0 denote the smallest natural number n such that
|an(f)| > 0, and m0 the smallest natural number m such
that |bm(h)| > 0. Clearly, we have

f(t) =
∞∑

n=n0

an(f)ξn(t)

=
∞∑

n=n0

an(f)en(t)︸ ︷︷ ︸
=A(t)

+
∞∑

n=n0

an(f)ξ
(1)
n (t)︸ ︷︷ ︸

=F1(t)

and

h(t) =
∞∑

m=m0

bm(h)hm(t)

=
∞∑

m=m0

bm(h)em(t)︸ ︷︷ ︸
=B(t)

+
∞∑

m=m0

bm(h)h(1)m (t)︸ ︷︷ ︸
=G1(t)

.

The next step of the proof is to consider

N∑
k=0

f(k)h(k) =
N∑
k=0

A(k)B(k) +
N∑
k=0

A(k)G1(k)

+
N∑
k=0

B(k)F1(k) +
N∑
k=0

G1(k)F1(k)

for N ∈ N. Using the properties 1) – 3) from Lemma 1, it can
be shown that the absolute values of the first, second, and third
summands are bounded above by some constant independently
of N , and that for the fourth summand we have

lim sup
N→∞

∣∣∣∣∣
N∑
k=0

G1(k)F1(k)

∣∣∣∣∣ =∞.
Since h(k) = 0 for k < 0, this implies that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)h(k)

∣∣∣∣∣ =∞.
To complete the proof, we consider the space Dsys =

Q−1RQDsys1, where R : f 7→ f(− · ) denotes the time-
reversal operator. Dsys is an infinite dimensional closed sub-
space of TC and we have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞
for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0.

Proof of Corollary 1. From Theorem 1 we know that there
exist an infinite dimensional closed subspace Dsig ⊂ PW1

π

and an infinite dimensional closed subspace Dsys ⊂ TC, such
that for all f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we
have

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (−k)

∣∣∣∣∣ =∞. (7)

Let t ∈ R be arbitrary but fixed, and consider the operator
U : L∞[−π, π] → L∞[−π, π], ĥT 7→ ĥT e−i · t. U is a
bounded, linear, and invertible operator with bounded inverse.
Hence, Dsys2 = Q−1UQDsys is an infinite dimensional closed
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subspace of TC. Let f ∈ Dsig and T2 ∈ Dsys2 be arbitrary but
fixed. Further, let ĥT = U−1ĥT2

. For N ∈ N we have
N∑

k=−N

f(k)hT2
(t− k)

=
1

2π

∫ π

−π
ĥT2(ω) e

iωt
N∑

k=−N

f(k) e−iωk dω

=
1

2π

∫ π

−π
(U−1ĥT2

)(ω)
N∑

k=−N

f(k) e−iωk dω

=
1

2π

∫ π

−π
ĥT (ω)

N∑
k=−N

f(k) e−iωk dω

=
N∑

k=−N

f(k)hT (−k). (8)

Since T ∈ Dsys, it follows from (8) and (7) that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT2
(t− k)

∣∣∣∣∣ =∞.
Proof of Corollary 2. The proof of Corollary 2 is similar to
the proof of Corollary 1.

From Theorem 1 we know that there exist an infinite
dimensional closed subspace Dsig ⊂ PW1

π and an infinite
dimensional closed subspace Dsys ⊂ TC, such that for all
f ∈ Dsig, f 6≡ 0, and all T ∈ Dsys, T 6≡ 0, we have
(7). Let t ∈ R be arbitrary but fixed, and consider the
operator V : L1[−π, π] → L1[−π, π], f̂ 7→ f̂ e−i · t. V is a
bounded, linear, and invertible operator with bounded inverse.
Let F denote the Fourier transform operator. Then Dsig2 =
F−1V FDsig is an infinite dimensional closed subspace of
PW1

π . Let f2 ∈ Dsig2 and T ∈ Dsys be arbitrary but fixed.
Further, let f̂ = V −1f̂2. For N ∈ N we have

N∑
k=−N

f2(t− k)hT (k)

=
1

2π

∫ π

−π
f̂2(ω) e

iωt
N∑

k=−N

hT (k) e
−iωk dω

=
1

2π

∫ π

−π
(V −1f̂2)(ω)

N∑
k=−N

hT (k) e
−iωk dω

=
1

2π

∫ π

−π
f̂(ω)

N∑
k=−N

hT (k) e
−iωk dω

=
N∑

k=−N

f(k)hT (−k). (9)

Since f ∈ Dsig, it follows from (9) and (7) that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f2(t− k)hT (k)

∣∣∣∣∣ =∞,
which completes the proof.
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