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Abstract—In this paper, we propose a solution adapted to
Impulse Radio - Ultra Wideband (IR-UWB) integrated receivers
devoted to indoor localization, making usage of multipath in-
formation under imposed time resolution and low complexity
constraints. The Multipath Components (MPCs) can ideally be
tracked by capturing their space-time correlation under mobility.
The proposed architecture is composed of Multiple Hypothesis
Kalman Filters (MHKFs) in parallel, each filter tracking one sin-
gle MPC while detecting measurement outliers or maneuvering
paths. A data association procedure enables to map the MHKFs’
outputs onto delays associated with receiver’s energy bins. The
relative temporal variations of MPCs are used to collectively infer
the missing direct path’s information in case of Non-Line of Sight
(NLoS). The corrected observations finally feed a conventional
Extended Kalman Filter (EKF) that estimates mobile’s position.
We evaluate the performance of the proposed scheme through
realistic simulations in terms of both MPC and mobile tracking.

Index Terms—Data Association, Impulse Radio, Indoor Local-
ization, Integrated Devices, Mulipath Components, Pedestrian
Navigation, Time of Arrival, Tracking Filter, Ultra Wideband.

I. INTRODUCTION

With the emergence of location-based services (indoor nav-
igation, context awareness, personal items monitoring, user-
centric mobility learning or detection...), wireless localization
has been identified as a key enabler for the last past years,
experiencing a significant growth from both academic and
industrial perspectives. In this context, the Impulse Radio
- Ultra Wideband (IR-UWB) technology has been regularly
promoted as a credible candidate due to its fine multipath
resolution capabilities, making possible the accurate estimation
of direct path’s Time of Arrival (ToA) [1]. Despite these
promising properties, harmful propagation phenomena in un-
controlled operating conditions, such as link obstructions or
dense multipath, still play a critical role on the performance
of ToA-based ranging and localization.

However, recent studies have shown that the space-time
correlation of Multipath Components (MPCs) under mobility
could be beneficial to indoor tracking [2], [3]. For instance,
some approaches aim at modeling and estimating the Non-
Line of Sight (NLoS) bias affecting the ToA of the first
detected path as a random walk process [4], or as a pseudo-
deterministic function depending on the moving direction

[5]. Other advanced solutions have been put forward more
recently, relying on the concept of virtual scatterers. First,
the Multipath-aided Indoor Navigation and Tracking (MINT)
technique, which requires the building layout, assumes a
geometric model accounting for wall reflections (at arbitrary
high orders) [6]. As another example, the Channel - Simul-
taneous Localization And Mapping (Channel-SLAM) method
estimates the scattering points in addition to the mobile po-
sition, while considering generalized MPC interactions within
the environment (e.g., incorporating also diffracted paths) [7].
However the previous solutions are either unstable over long-
term trajectories and under generalized NLoS situations [4],
[5] or they may be computationally demanding (e.g., con-
catenating several particle filters in charge of estimating very
large state vectors). Finally, they may require specific hardware
or additional processing capabilities to estimate the Angle of
Arrival (AoA) out of phase difference measurements, mobile’s
heading based on inertial units [7], or high-speed sampling and
aggressive sensitivity/dynamics for received signal acquisition
[6]. The previous requirements are hardly compatible with
currently available low-cost and low-power integrated devices.

In this paper, we thus propose a global low-complexity so-
lution suitable to integrated IR-UWB receivers under stringent
hardware constraints. Significant MPCs are detected out of raw
channel estimates, associated to an a priori evolution model
and tracked independently, before being collectively exploited
to infer the missing leading edge’s ToA in detected NLoS
situations. This proposal is made deliberately compatible with
a reference mobile tracking filter, which admits one single
ToA estimate as observation per radio link. The new solution
is expected to be mostly beneficial in case of generalized
obstructions with respect to fixed bases.

II. PROBLEM STATEMENT AND MODELING

A. Receiver Specificities and Channel Representation

The receiver of interest is part of a complete system on chip
designed for low-power IR-UWB localization applications [8].
The received signal is amplified, translated to baseband thanks
to an In-phase and Quadrature-phase mixer, integrated in
windows of 2ns shifted by 1ns (and thus, sampled at the same
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period) and finally squared, leading to positive values. There-
fore, the intrinsic multipath resolution is on the order of 2ns,
whereas adjacent windows are overlapping and thus correlated.
At each time step k (i.e., for each channel acquisition), the
receiver delivers an estimated version of the Channel Impulse
Response (CIR) (see Fig. 1), which is made of the p(k)max most
energetic delay-amplitude components bin(k)p , p ∈ J1, p(k)maxK
(also called ”bins” hereafter), where p

(k)
max depends on the

receiver architecture specificity (e.g., ≤ 64 here).

Fig. 1. Theoretical channel impulse response as a Dirac suite (top), received
(noise-free) signal after convolution with the transmitted waveform (middle)
and corresponding channel estimate available at the receiver (bottom).

B. Multipath Parameters and Evolution Model

Based on the set of observed bins {bin(k)p }p=1...p
(k)
max

over a
radio link, the purpose is to track specular1 MPCs belonging
to the theoretical CIR (See Fig. 1) so as to further assist the
estimation of mobile position. We first define for each MPC i
the vector of parameters:

X
(k)
i = [τ

(k)
i , τ̇

(k)
i ]T , i = 1...n(k) (1)

where n(k) is an arbitrary large number of tracked MPCs
at time step k, τ (k)i and τ̇

(k)
i = (τ

(k)
i − τ (k−1)i )/∆T (k) are

respectively the delay and delay evolution speed of the i-th
MPC at the same time step, and ∆T (k) = T (k) − T (k−1) is
the time interval between time steps k − 1 and k.

Under moderate pedestrian mobility and relatively high
refresh rate (i.e., 1/16 s herein), we indirectly assume a simple
constant-velocity evolution model for these MPC parameters:

X
(k+1)
i = A

(k+1)
i ·X(k)

i + V
(k+1)
i

=

[
1 ∆T (k+1)

0 1

]
·X(k)

i +

[
0

v(k+1)

]
(2)

where A
(k+1)
i represents the state transition matrix between

time steps k and k + 1, and the centered Gaussian random
noise term v(k+1) reflects the constant velocity hypothesis.

If τ (k)1 is the ToA associated with the direct path in Line of
Sight (LoS), which is also abusively called channel Leading

1Contrarily to diffuse components, which may be less correlated in time-
space under mobility and thus, less relevant into the mobile tracking problem.

Edge (LE) and noted τ
(k)
1 = τ

(k)
LE in the following, the non-

linear function linking τ (k)LE with the 2D Cartesian coordinates
of the mobile (x(k), y(k)) and a particular base (or anchor)
with known 2D coordinates (xj , yj), j = 1...Z, is given by:

τ
(k)
LE,j =

1

c

√
(xj − x(k))

2
+ (yj − y(k))

2 (3)

where c is the speed of light.
Using straightforward trigonometric relationships illustrated

on Fig. 2, one can write the equation binding the mobile speed
vector,

−−−−→
Vmobile, and the relative delay variation of a given MPC

between two consecutive mobile positions,
−−−→
VToA (where we

omit the indexes i, j and k for notation simplicity) as follows:

‖
−−−→
VToA‖ = ‖

−−−−→
Vmobile‖ · cos (φ) (4)

θ = (
−→
Ox,
−−−−→
Vmobile) = α+ φ (5)

Under the assumptions of high refresh rate and distant scat-
terer, the absolute angle α formed between the x axis and the
received MPC direction of arrival is supposed time-invariant
between consecutive mobile positions in first approximation.

Fig. 2. Geometric relationship between consecutive mobile positions and
multipath delay variation.

Using (5) in (4) and re-introducing the 2D Cartesian no-

tations (V
(k)
x , V

(k)
y ) for the mobile speed of norm ‖

−−−−→
V

(k)
mobile‖,

the mobile localization problem could be explicitly formulated
with the system of equations (6) and (3), involving all MPCs
i with respect to all bases j.

τ̇
(k)
i,j =

√
(V

(k)
x )

2
+ (V

(k)
y )

2
· cos (θ(k) − αi,j) (6)

As seen hereafter, the previous equations can be simplified for
easier and more stable implementation, while still capturing
the time-invariance of αi,j .

III. PROPOSED ALGORITHMS

The overall proposed framework is shown on Fig. 3. The
mobile tracking is performed like in [9] using a conven-
tional Extended Kalman Filter (EKF) based on LE ToA
measurements {τ̂ (k)LE,j}j=1...Z with respect to Z bases, using
(3) as observation equations. Similarly to [4], an additional
innovation monitoring procedure is also implemented for
preliminary NLoS detection, determining the Channel Status
C

(k)
Sj

= {LoS,NLoS} between the mobile and each base
j at time step k. Alternatively, one could for instance rely
on the channel energy distribution (e.g., delay spread) or
on sudden variations in the short-term history of LE ToA
measurements (i.e., larger than expected, under reasonably
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slow mobility). C(k)
Sj

enables to trigger measurement outliers
mitigation or correction. More particularly, in case of detected
NLoS, we use the relative drift parameters associated with
the tracked secondary MPCs to collectively reinforce (and
hopefully correct) the estimated value τ̂ (k)LE feeding the mobile
tracking EKF as input observation.

A. MPCs Tracking

The tracking of each MPC i is ensured by an independent
EKF based on a preliminarily associated bin delay Ỹ

(k)
i ,

where the observation equation simply accounts for the delay
quantization noise W (k) due to the finite bin width:

Ỹ
(k)
i = round(X

(k)
i )

=
(

1 0
)
·X(k)

i +W
(k)
i

= C(k) ·X(k)
i +W

(k)
i

(7)

Note that in (7), Ỹ (k)
i at time step k is the mapping result

between the predicted state X̂(k|k−1)
i (based on A(k)

i ) and the
set {Y (k)

i }i=1...m(k) of m(k) raw (i.e., unassociated) detected
bins’ delays (See Fig. 3):

Ỹ
(k)
i = H (k)

(
X̂

(k|k−1)
i , {Y (k)

i }i=1...m(k)

)
(8)

where H (k) represents the mapping function (detailed later).
With the intention to track several paths at once but in-

dependently to avoid cross-divergence or error propagation
issues, the architecture is then parallelized by considering one
filter per tracked MPC like in [10], whose innovation σ(k)

i and
innovation covariance Σ

(k)
i are calculated as follows:

σ
(k)
i = Ỹ

(k)
i − C(k) · X̂(k|k−1)

i

Σ
(k)
i = C(k) · P (k|k−1)

i · (C(k))
T

+R(k)
(9)

where at time step k, R(k) is the observation noise covariance
(i.e., associated with W (k)

i )2 and P (k|k−1)
i the predicted state

covariance matrix.
Since sudden changes in the MPC trajectories (so-called

”maneuvering” paths) and frequent MPC collisions in dense
multipath environments can seriously alter the tracking perfor-
mance, as illustrated in [10], we thus propose to use a Multiple
Hypothesis Kalman Filter (MHKF) instead of the EKF. This
filter aims at discriminating several hypotheses (herein, a MPC
”trajectory” change vs. a MPC delay measurement outlier)
based on a detection threshold. The latter is based on the
normalized innovation (10) and set according to an a priori
false alarm rate criterion.

Φ
(k)
i = (σ

(k)
i )

T
· (Σ(k)

i )
−1
· σ(k)

i (10)

At each iteration, if the normalized innovation Φ
(k)
i ex-

ceeds the threshold, then the filter generates in parallel two
candidates for the estimated state X̂

(k|k)
i of the i-th MPC,

X̂
(k|k)
i (H1) and X̂(k|k)

i (H2), considering:
• (H1) A measurement outlier: One increases the corre-

sponding term in the observation noise covariance R(k),

2Noise covariance matrices are assumed independent of i and set according
to the maximum expected MPC delay excursion within the refresh period.

before calculating X̂
(k|k)
i (H1) and P

(k|k)
i (H1) in the

EKF correction step.
• (H2) A reliable measurement but an uncertain state

transition model: One increases the corresponding term
in the state noise covariance Q(k) in the EKF prediction
step, before calculating X̂

(k|k)
i (H2) and P

(k|k)
i (H2) in

the EKF correction step.
At the next time step k+1, one computes the new predictions
corresponding to both of the previous candidate estimates.
During the new correction step, the final decision is made
between the initial estimates by comparing their respective
innovation terms, thus determining X̂

(k+1|k+1)
i accordingly

and X̂(k|k)
i retrospectively. Note that this procedure introduces

additional latency (equivalent to one time step).

B. MPCs Detection, Association and Windowing

Contrarily to the MPCs detection solution presented in
[11], we aim at reducing complexity by avoiding back and
forth moves between time and frequency domains. Moreover,
considering the temporal resolution available at the receiver,
we cannot apply exactly the same amplitude-based associ-
ation criterion due to small-scale fading. We thus propose
herein an alternative solution. The detected bins’ delays
{Y (k)

i }i=1...m(k) described in (8) are determined from the bins
{bin(k)p }p=1...p

(k)
max

. A received pulse typically spreads over
several bins due to its temporal width (on the order of a few
nanoseconds). But as one single bin per tracked MPC has to
be selected for each MHKF, only m(k) local energy maxima
will be chosen among all the bins, similarly to [9].

Before feeding the MHKF, we map each tracked MPC with
the closest measurement in {Y (k)

i }. So as to avoid aberrant
associations, we proceed to a preliminary windowing of the
candidate measurements around the latest estimated ToA value
τ̂
(k−1|k−1)
i (i.e., based on the MHKF output at time step k−1).

The final MHKF observation input Ỹ (k)
i , from the mapping

function H (k) (see (8)), then corresponds to the closest allowed
bin delay Y (k)

li
(providing a local energy maximum) associated

with τ̂ (k|k−1)i , where li is defined by:

li = argmin
p∈J1, m(k)K∩Win

(k)
i

(
|τ̂ (k|k−1)i − Y (k)

p |
)

(11)

where Win
(k)
i denotes the window for the i-th MPC, set to

encompass maximal shifts of τ (k)i within the refresh period.
For benchmark purposes, we also consider a receiver that

selects only the five most energetic bins (depicted as Fingers
hereafter) in the estimated channel profile at each time step.

C. MPC-Assisted Mobile Tracking

Equation (6) are highly non-linear and their direct introduc-
tion as observations in the mobile tracking EKF would imply
high computational complexity due to the number of state
variables to be estimated (i.e., considering numerous MPCs
per radio link, and multiple links with respect to bases), as
well as instability or even observability issues due to the noisy
angular arguments in the cosine function.
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Fig. 3. Overall MPC-aided mobile tracking framework.

However, one can simply write the relationship between
τ
(k+1)
i,j and τ (k+1)

LEj
. The idea is to estimate the time-invariant

parameters of a linear function accounting for the temporal
drift of any MPC relatively to the direct LE path:

τ
(k)
i,j = ai,j · τ (k)LEj

+ bi,j (12)

Equation (12) still captures to some extent the time-
invariance of α in (6). It can thus be used to provide the
final mobile tracking EKF with corrected observations of τ (k)LEj

.

As long as C(k)
Sj

= LoS, ai,j and bi,j can be estimated as

constant parameters by a side KF filter. Then, if C(k)
Sj

= NLoS
is detected (See e.g., the first paragraph of III), the latest
estimated MPC drift parameters (stored in a buffer), â(Buffer)

i,j

and b̂
(Buffer)
i,j , can be injected into (12) to determine one

correction τ̂
(k)
LEi,j

for each tracked secondary MPC i. Finally
different rules can be applied (e.g., mean, median, weighted
mean, majority voting) to combine the MPC contributions and
issue the global correction τ̂ (k)LEj

.

IV. SIMULATION RESULTS

A. Multipath Tracking Performance

Using equation (12) to correct the value of τ̂ (k)LEi,j
in NLoS

involves a good estimation of the parameters ai,j and bi,j over
LoS periods. In addition, for the final correction τ̂

(k)
LEj

, it is
necessary to track a large number of MPCs over sufficient time
periods to capture beneficial space-time correlation effects.

For the evaluation of MPCs tracking, we use a semi-
deterministic tool modeling the dynamic evolution of MPCs
under mobility. The latter are first drawn as realizations of the
IEEE 802.15.4a statistical channel model and then adjusted (in
both amplitude and delay) according to the mobile trajectory
[12]. Results are obtained over 100 simulation trials of 200
time steps each with a refresh period of 1/16 s in both LoS
and NLoS residential contexts. The maximum number n of
MHKFs in parallel (See Fig. 3) is set to 20.

The MPC delay estimation error is defined as the time
difference to the closest existing MPC at each time step,

regardless of association issues. Table I reports such errors
for characteristic values of their empirical Cumulative Density
Functions (CDF) (i.e., median error regime at CDF=50% and
worst-case error regime at CDF=90%) for different delay
estimators: Fingers, local detected maxima (i.e., MPC Detect.
outputs on Fig. 3), and tracked MPCs (i.e., MHKF outputs on
Fig. 3). It can be noticed that the proposed parallel MHKF
tracking architecture offers the best median estimation error
in both LoS and NLoS channel configurations. One can also
remark a very slight performance degradation in the worst-
case error regime, even though still outperforming the Fingers
approach. This is caused by pathological cases where two
parallel MPCs are too close with respect to the receiver
resolution (i.e., within 2 ns), leading to switch from one MPC
to the next indifferently without detecting any change.

TABLE I
MPC DELAY ESTIMATION ERROR

LoS NLoS
50% 90% 50% 90%

Fingers 0.2389 0.5653 0.2389 0.7486
Detected MPCs 0.2139 0.4661 0.2062 0.4705

MHKF 0.1588 0.5024 0.1721 0.5108

Fig. 4 shows the empirical CDFs of the absolute time
variations δ(k) between two successive estimated MPC delays
between time steps k − 1 and k. The idea is to evaluate
the capability to capture the MPC space-time correlation
over mobility. The MHKF approach is now compared to two
variants of the Fingers approach, whose outputs are ordered
according to the detected bins’ amplitudes or to their delays
(for better fairness). It is thus rather clear that the proposed so-
lution better captures MPC continuity over mobility with most
of the estimated delay transitions below 1ns (and definitely
lower than 2ns, in compliance with the considered pedestrian
mobility). Other basic Fingers approaches are simply bounded
to the bin shift and quantization effect for errors below 1 ns,
but they can experience much larger transitions up to 50 ns.

Fig. 5 represents the empirical joint Probability Density
Function (PDF) of MPC’s Life Time (LT) and MPC’s Cumu-
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Fig. 4. CDF of time variations between consecutive estimated MPC delays.

lative Tracking Time (CTT). Our proposal globally enables to
shift the dominating density modes towards the right upper
corners of the plots (i.e., thus capturing simultaneously longer
CTTs and longer LTs) in LoS and NLoS contexts. This
contributes to improve the LE correction procedure in case
of sudden LoS-to-NLoS transitions.

Fig. 5. 2D joint PDF of MPC’s Life Time (LT) and Cumulative Tracking
Time (CTT) for MHKF and Fingers in residential LoS (a) and NLoS (b).

B. Mobile Tracking Performance

We now consider a 14mx14m square room with Z = 3
bases and one mobile user. The channel model is simplified
so that the received signal consists of a direct path (in LoS) and
four secondary MPCs resulting from single-bounce reflections
on the walls (in both LoS and NLoS). At the start and the
end of the simulated trajectory (of 2D coordinates (7m,1m)),
all bases are in LoS whereas the channel status is gradually
changed to NLoS at the three bases, as materialized by the
shadowed areas on Fig. 6. When only one base is in NLoS, the
location error of the nominal EKF filter increases significantly
due to the incorporation of strongly biased delay observations
(blue). Over the same portion of trajectory, the benefits from
NLoS detection and subsequent measurement bias mitigation
by adjusting the observation covariance (black) is rather sig-
nificant. Nevertheless, as soon as the NLoS configurations
are generalized with respect to the other bases (i.e., up to
the 3 bases), the covariance-based outliers mitigation (i.e.
after NLoS detection through innovation monitoring) tends
to reject all the input measurements and experiences poor
Geometric Dilution of Precision (GDoP), thus making the filter
diverge even more rapidly than the solution with no prior
NLoS detection. At the end of the trajectory, the classical
innovation monitoring approach keeps on rejecting reliable
measurements even in systematic LoS contexts due to the

previous divergence. On the contrary, our MPC-aided strategy
maintains a reasonable location error comparable to systematic
LoS (lower than 0.5m over the full trajectory) whatever the
channel status.

Fig. 6. Example of 2D estimated square trajectory.

V. CONCLUSION

In this paper, under practical IR-UWB receiver constraints,
we have presented a low-complexity algorithmic framework
to effectively track time-variant MPCs, correct estimated LE
delays after NLoS detection, and finally assist mobile position
estimation in case of generalized obstructions with respect to
fixed bases. The provided simulation-based results show that
the proposed solution can finely capture MPCs’ space-time
correlation under mobility, and finally contributes to maintain
a constant quality of the localization service in harmful indoor
environments. Pending field experiments with the devices
described herein will allow performance analysis on real data.
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