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Abstract—The two Galileo satellites launched in 2014 (E14 and
E18) were injected in orbits with a significant eccentricity. Both
the gravitational potential at the location of the satellites and
their velocity thus change as a function of time. Since the Galileo
satellites carry very stable clocks, these can potentially be used to
set new bounds to the level of agreement between measurements
of the clocks’ frequency shifts and their prediction by the theory
of relativity. This paper presents some initial results obtained by
processing available data from Galileo satellite E18.

1. MOTIVATION

The first two satellites part of the Full Operational Capabil-
ity (FOC) phase of the Galileo program (identified with codes
E14 and E18) were injected into orbits with an eccentricity of
0.29. This eccentricity was later reduced to about 0.16 with
several orbital maneuvers, but it is still much larger than the
nominal value of 0.0002. A further reduction was not possible
due to the limited amount of fuel onboard the satellites. The
European Space Agency (ESA) is presently (2016) assessing
whether the two satellites can still be integrated in standard
operations. On the other hand, the higher eccentricity is an
opportunity for science. The two satellites are transmitting
navigation signals timed by one of the four onboard stable
atomic clocks: two Rubidum clocks and two passive Hydrogen
Masers (HMs). The former are characterized by an Allan
standard deviation o = 2 - 10714 at 2.5 - 10%s [1], the latter
are even more stable, at ¢ = 7 - 1071° at 10%s [2]. The
high stability of these clocks provides an excellent opportunity
for a space-based experimental test of general relativity. The
long term availability of measurements allows to successively
reduce the statistical uncertainty.

According to general relativity, the rate of a clock located at
a position of higher gravitational potential is increased when
compared to a clock situated in a region of lower gravitational
potential. This is commonly known as the gravitational redshift
and it has been experimentally tested in the Vessot-Levine
rocket experiment Gravity Probe A (GP-A) in 1976 to an
accuracy of 1.4 x 10~% [3]-[4].
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In this work we study the relativistic offset (redshift and
Doppler shift) of the HM clock onboard the Galileo satellite
E18 with respect to a reference atomic clock on Earth. The
eccentric orbit enables a comparison of the rate of the clocks at
different gravitational potentials repeatedly. The high stability
of the onboard atomic clocks and potentially long observation
spans reduce the statistical uncertainty of the estimates, thus
enabling measurements of the gravitational redshift with a high
level of accuracy [5], provided that all systematic errors are
correctly accounted for.

II. RELATIVISTIC EFFECTS

Ashby [6] derives the following metric in the Earth-
Centered-Inertial (ECI) frame:

ds? — (1 n @) (cdt)? — (1 - 20—‘2/) (dr? 4 r2d0?)

M
where c is the speed of light; V' is the Newtonian gravitational
potential of the Earth, approximately given by

GMg <1 — (“f)zpz(sme)> : )

with Jo = 1.08263 x 1073 the Earth’s quadrupole moment
coefficient (we will keep the assumption of small % through-
out this manuscript), ag = 6.3781370 x 10° m the Earth’s
equatorial radius, and P, the Legendre polynomial of degree
2; ®g is the effective gravitational potential of the Earth on the
geoid (WGS-84) [7] in the rotating frame, which includes a
1/r contribution due to the Earth’s mass, a contribution from
the quadrupole potential, and a centripetal contribution due
to the Earth’s rotation (a reference value is defined by the
Astronomical Union as q;—? = —6.969290134 x 10~19); ¢ is
the coordinate time — defined by the rate of reference clocks
at rest located on Earth’s geoid; dQ2 = d6?2 + sin (0)° d¢? is
the two dimensional angular line element; and (r, 0, ¢) are the
spherical polar coordinates. It can be easily verified that the
proper time of a clock located on the Earth’s geoid is equal
to the coordinate time ¢, so that it may serve as the correct
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basis for synchronization. This provides the foundation for the
comparison of satellite clock rates in different gravitational
potentials. Using the metric given in Eq. (1), the proper
time increment of a clock moving with velocity v in the
gravitational field is computed as

(V — (I)@) ’U2
deat:<1+C2—2C2 dt . (3)
The second term on the right-hand side % represents

the contribution from the gravitational redshift due to the
difference in the gravitational potential. Since it enters with a
positive sign, this term describes the advance of the satellite’s
clock with respect to the reference clock on Earth. The
third term (%) corresponds to the contribution from special
relativity — the second-order Doppler effect — which enters
with a negative sign, implying the dilation of time of the
moving clock. Integration along the path of the satellite’s clock
yields the elapsed proper time

. 2
AToay = At + / <<VC;I)@)—U>dt. )

2c2
path
Thus, the relativistic correction to be applied to a satellite
clock orbiting the Earth amounts to

Arcl = ATsat — At
_ (V-2g) o* 5)
-/ ( ro) V.
path

Assume the path of the satellite to be an elliptic Kepler orbit
so that the radial distance is given by the Keplerian orbital
parameters

r=a(l—-ecos(FE)) , (6)

where a is the semi-major axis, e is the eccentricity and E is

the eccentric anomaly. Using the orbital energy conservation

equation

v? GMg GMg
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the velocity term in Eq. (4) can be substituted with (7),

obtaining
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The first term on the right-hand side is of linear order in time,
and corresponds to a constant frequency offset. This offset is
usually factory-adjusted on navigation satellites before launch,
by accordingly reducing the nominal transmitting frequency
[6]. The second term describes the modulated component of
both the gravitational redshift and the second-order Doppler
effects. While this modulation is of limited amplitude
(= £0.5 ns) for Galileo satellites moving on nominal orbits
(e = 0.0002), the higher eccentricity of the orbits of satellites
El4 and E18 increases the amplitude to approximatively
370 ns. This large contribution provides us with a good
opportunity to perform highly precise observations of the

gravitational redshift using the atomic clocks onboard E14
and E18.

III. GALILEO SATELLITES

Galileo FOC satellites transmit three independent Code
Division Multiple Access (CDMA) signals, named E1, ES and
E6. All signals are Right-Hand Circularly Polarized (RCHP)
[8]. Six signals are accessible to all Galileo users on the El
and ES bands for Open Services (OS), whereas four additional
signals on E1 and E6 bands are only accessible to authorized
users for Commercial Services (CS) and Public Regulated
Services (PRS). In the remainder of this manuscript, we only
refer to the OS signals in the E1 and E5 bands, and more
specifically the E1 and ESa signals.

Three main types of measurements are available: pseudorange,
carrier-phase, and Doppler. Pseudorange measurements are
derived by multiplying the speed of light with the signal time-
of-flight. The prefix pseudo is attached to stress that the actual
measurement deviates from the theoretical geodesic due to
a number of systematic effects (e.g., synchronization biases,
perturbations introduced by the atmosphere, antenna effects,
multipath) and inherent measurement noise. The fractional
carrier phase and the Doppler measurements are extracted
from the carrier tracking loop. The noise of carrier phase
measurements is two orders of magnitude smaller than for
pseudorange measurements. Unfortunately, carrier phase mea-
surements are affected by an integer ambiguity, due to the
2m-periodicity of the carrier phase. These ambiguities must
be removed in order to fully exploit the higher precision of
the carrier phase observations.

If the position of both a receiver on Earth and a transmitting
satellite are precisely known, the pseudorange and carrier-
phase measurements can be used to assess the timing differen-
tial between the orbiting clock and the clock at rest on Earth.
This differential is produced by a number of contributing
factors, which can be classified within three segments: satellite
(antenna, clock bias and errors, linear and rotational motion),
propagation (ionospheric and tropospheric delays) and receiver
(antenna, clock bias and errors, multipath) contributes. Clock
biases due to relativistic effects, caused by both the relative
motion and the gravitational differential between satellite and
reference clocks, constitute the largest factor for satellites on
orbits with non-negligible eccentricities. Observations from
Galileo satellites E14 and E18 (cf. Table I) show a time-
dependent bias with one-orbit period and an amplitude of
about 370 ns (cf. section II).

IV. HANDLING OF GALILEO DATA

The pseudorange and carrier-phase observations measured
by a receiver r tracking satellite s at coordinate time ¢ on
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TABLE I
ORBITAL PARAMETERS OF GALILEO SATELLITES E14 AND E18 ON DAY
252 (2015).
El4 E18
Semi-major axis a [Km] | 27977 27978
Eccentricity e 0.157 0.157
Inclination % [deg] 49.926 49.869
Height at apogee [Km] 26002 26004
Height at perigee [Km] 17207 17205
Orbital period [h] 12.94 12.94

channel (frequency) f are modeled as [9]

s (E) = |lrn(t) =t = D) + c(Atr(t) — A3 (t = T))
+e(drf(t) —dj(t = T)) + I7 5 (t) + T2 (2)
+mf»,p,f(t) + Gf»,P,f(t) )

lrr(t) —r°(t = D)l + c(Atr(t) — At3(t = T))

(O (t) =63 =T1)) = L7 (t) + T2 (¢)

+m7 o (t) + Ar (@7 p(fo) — @F(t0)) + ArNif

FArAQL(t —to) + € 0 4(1) .
(

P pseudorange measurement [m]

(0] carrier phase measurement [cycles, fractional]

T signal satellite-to-receiver travel time [s]

to time of reference for phase synchronization [s]

satellite and receiver vectorial position [m]

ionospheric and tropospheric delays [m]

multipath error [m]

speed of light : 299 792 458 [m/s]

clock biases [s]

, 0 instrumental delays [s]

phase of the generated carrier signal (original or

replica) [cycles]

Ag signal wavelength at frequency f [m]

N number of complete carrier phase cycles that have
occurred between signal generation and signal
carrier phase measurement [integer cycles]

Ay?  phase wind-up [cycles, fractional]

€p , € remaining unmodeled pseudorange and carrier phase
errors [m]

The range between satellite and receiver ||r,.(t) — r*(t — T
refers to the geometrical distance between the respective an-
tenna phase centers. Atmosphere-induced delays are accounted
for in the ionospheric (Z) and tropospheric (7) delay terms,
expressed in meters. The effect of the non-perfect time syn-
chronization of both receiver and satellite clocks is captured
by the clock bias terms At, i.e., the clocks’ offset from the
coordinate time. d and ¢ denote the pseudorange and carrier-
phase instrumental delays, respectively. These delays can be
frequency-dependent. The measurements are also affected by
undesired replicas of the incoming signal, whose contributes
are lumped in terms m, and m,, indicating the pseudorange

and carrier phase multipath errors, respectively. The carrier
phase observations ¢ are ambiguous by an integer number of
full cycles, denoted with N. Finally, the phase variation due
to the slow rotation of the transmitting satellite — the phase
wind-up effect — is modeled and denoted with A3 (t — ¢).
We assume the presence of zero-mean additive noise on both
pseudorange and carrier phase measurements, with variances
(constant across all channels) af, and ai, respectively [10].
An elevation-dependent model is applied to down-weight
observations when the satellite is at low elevation [11]:
2 2 -l
Braw(t) = obe (1410775 ) L (10)

with 0°(t) the satellite elevation at time ¢ and 6. the cut-off
angle (observations from satellites whose elevation is lower
than the cut-off angle are discarded).
The differential clock bias At2(t,T) = At,.(t) — At3(t —T)
can be decomposed in three main constituents:

At (t,T) = Atf)l(t, T)+ Atfﬁn(t, T) + At;

7,111

(t,T). (11)

The three terms in (11) describe the inherent (constant, linear
and second-order terms in time) bias and drift of receiver and
satellite clocks (At? ), the (linear) drift due to the constant-
rate components in the relativistic correction term in (8)
(At? ,), and a modulated signal due to the combined effect of
second-order Doppler shift and gravitational redshift (A¢? ;).
The latter is the signal of interest for the scope of this work.

A. The International GNSS Service products

The International GNSS Service (IGS) is a voluntary feder-
ation of a number of institutions spanning the whole globe,
which aims at providing very high precision products in
support of scientific uses of GNSSs. IGS products include
GNSS satellite ephemerides, Earth rotation parameters, global
tracking station coordinates and velocities, satellite and track-
ing station clock information, zenith tropospheric path delay
estimates, and global ionosphere maps. These products are
obtained from a global tracking network of more than 300
permanent, continuously-operating GNSS stations that provide
a large data set to a number of IGS analysis centers (ACs).
Currently, the IGS only officially releases GPS and GLONASS
data, but a Multi-GNSS Experiment (MGEX) has been active
since 2011 to track, process and analyze all available GNSS
signals, including those from Galileo satellites. The harmo-
nization and collective contribute of each GNSS will allow for
more precise products, especially with respect to atmospheric
parameters [12], [13]. Several MGEX-ACs, such as TUM
(Technische Universitiat Miinchen) or CODE (Center for Orbit
Determination in Europe), make available products relative to
Galileo satellites E14 and E18 (since 2015). For our scopes,
accurate and unbiased products are paramount. Any bias that is
systematically modulated with one-orbit period is detrimental
to the precision of the gravitational redshift measurements. The
accuracy of the available satellite orbit is the main limiting
factor for a precise measurement of the gravitational redshift.
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TABLE 11
ACCURACY OF CODE PRODUCTS
Product Accuracy
Orbit [17] 15 cm

3 mm (Horizontal)
6 mm (Vertical)
0.05 ns

5 mm

Station coordinates [15]

Receiver clock

Troposphere zenith delay [18]

B. Extracting the relativistic signature

For a first analysis, pseudorange and carrier phase obser-
vations from the Geodetical Observatory Wettzell, Germany
(WTZ3) are used. The geometric range between receiver and
satellite is computed using the daily station coordinates and
the satellite orbit from CODE. We also use the station clock
correction and the tropospheric zenith delays from CODE.
The latter delays are mapped to tropospheric slant delays
T.° using the Niell mapping function [14]. The satellite and
receiver antenna phase center offsets are compensated by using
the conventional IGS calibration data [15]. Finally, the phase
wind-up is removed by applying a nominal attitude model [16].
The observation model for measurements in the E1- and ESa-
band after corrections reads

PL.(t) = cAtt,T)+ Lo (t) + € (1),
PlL_(t) = cAt(t,T) 4+ Lps(t) + € 5o (t)
Api @5, (1) = cAt(t,T) — T (t) + ApiLip + 5 5, (1) ,
Aps@ps(t) = AUt T) — Lps(t) + ApsLis + €4 55(1)

(12)
where we dropped the sub- and superscripts denoting receiver
and satellite, and we lumped the fractional and integer phase
terms into the real-valued parameter L. Neither instrumental
delays, nor multipath, are modeled. The remaining parameters
can then be estimated with an accuracy proportional to the
available CODE products summarized in Table II [15]-[17]-
[18]. Note that the use of external products may introduce
undesired systematic effects [19]. The accuracy of the applied
corrections is dominated by the satellite’s orbit accuracy. Using
dual frequencies observations, no external ionosphere model
is necessary: the first-order ionospheric delay can be estimated
by relating the delay on the two signals with [9]

f2
Tos(t) = 5L (t)
fES
Higher-order ionospheric delays — up to 2 cm [20] — remain
uncompensated. This leaves one time-dependent clock term,
one time-dependent ionospheric term and two constant real-
valued ambiguity terms to be estimated over m epochs of
measurements. We can then write the following observation
model for casting observations from m epochs:

(13)

y = Ax, (14)

Modulated relativistic component in the differential clock bias, E18

o,

Clock bias [ns]

o
Eccentric anomaly [deg]

Fig. 1. Epoch-by-epoch estimated (for 51 arcs above the reference station)
and theoretical (red dots) modulated component of the relativistic signature,
as function of the satellite orbital position.

with
T
Yy = (YPg;l ) yP'E5 y Y<I>'E1 ; y<1>’E5) ;
x = (cAtT,ZIT,L™)T,
At = (At(tla T) PR At(tmaT))T ;
I = (IEl(tl) 9 L) IEl(tm))T )
L = (LEI ; LEs)T s (15)
I, L, 0 0
12
L, ‘B, o o0
A = E5
I’m _Im )\Elem 0
I, _@Im 0 Aps€m
fes

I,, denotes the m x m identity matrix and e,, denotes an m-
vector of ones. Each vector y Pl in y casts the m corrected
pseudorange or carrier phase measurements at frequency f (cf.
Eq.12).

The variance-covariance (v-c) matrix Qyy that characterizes
the measurement dispersion is built as

Qyy = diag (QPE17QPE57 Qs> Q«»ES) ) (16)
with
QPEI = diag 0129]51 w(tl)v ’ 123131 w(tm) )
Qp,. = diag J}%ES,w (t1),..., af,ES W(tm)
o : (17)
Qs,, = diag 0% W(t1); 7U<bEl,w(tm) )
Qq’Es = dlag iES w(tl)v ) iES w(tm) )
and op,, = 0p,, = 0.5 m and 04, = 0s,, = 0.005 m.

Expressions (14) and (16) define the functional and stochastic
models used. The least-squares adjustment reads
x = (ATQuA)T'ATQuy,
Qxx (ATQ;;A)*1
Note that both the differential clock bias and the ionospheric
delay terms are estimated epoch-by-epoch. The differential
clock biases after removing the satellite constant, linear and
second-order drift with a second-order polynomial fitting are
visualized for 51 passages over the Wettzel reference station in

(18)
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Clock resit i between

ion and model), E18
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Fig. 2. Epoch-by-epoch (30 seconds samples) difference between estimated
and theoretical relativistic signature as function of the satellite orbital position.

Fig. 1: the modulated component due to the combined effects
of gravitational redshift and second-order Doppler shows a
good fit with the prediction from model (8). Fig. 2 visualizes
the difference between the data and model for the 51 arcs
analyzed: the residual noise and systematic effects are within
a fraction of a nanosecond.

V. CONCLUSIONS AND FURTHER WORK

This work focused on analyzing the opportunity offered
by Galileo satellites E14 and E18 to test the gravitational
redshift. Thanks to the eccentric orbits and the availability of
highly stable atomic clocks onboard both satellites, a precise
observation of the relative time offset between clocks on Earth
and the two orbiting clocks is and will be available over
a large time span, enabling a prolonged space-based test of
the gravitational redshift predicted within the framework of
general relativity. Aiming at improving on the current accuracy
in the measurement of the gravitational redshift effect (cf.
section II), presently at 140 ppm [4], a joint project by
the Institute of Communication and Navigation (Technische
Universitdt Miinchen) and the Center for Applied Space Tech-
nology and Microgravity (University of Bremen) will focus on
analyzing and mitigating any remaining spurious contributes
in the estimation of the differential clock bias. In order to
refine the estimation process, an improved orbit determination
scheme including ad-hoc solar and thermal radiation pressure
parameters [21]-[22] and a satellite clock model will be ap-
plied, reducing any systematic effect associated to the satellite
orbit and clock terms. Furthermore, larger time spans from
multiple reference stations will be processed, contributing
to reduce the measurement noise and augmenting both the
availability and the statistical meaning of the data.
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