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Abstract—Electromagnetic modeling and imaging of fibered
laminates with some fibers missing is investigated, this extend-
ing to similarly organized photonic crystals. Parallel circular
cylinders are periodically set in a homogeneous layer (matrix)
sandwiched between two homogeneous half-spaces. Absent fibers
destroy the periodicity. An auxiliary periodic structure (supercell)
provides a subsidiary model considered using method tailored to
standard periodic structures involving the Floquet theorem to
decompose the fields. Imaging approaches from the Lippman-
Schwinger integral field formulation as one-shot MUltiple SIgnal
Classification (MUSIC) with pointwise scatterers assumptions
and an iterative, sparsity-constrained solution are developed.
Numerical simulations illustrate the direct model and imaging.

I. INTRODUCTION

Fiber-reinforced composite laminates are widely used for
their advantages in terms of stiffness and strength in man-
made parts in aeronautics, automotive industry and for green
energy applications. Ensuring reliable usage is necessary, and
challenging issues of non-destructive testing (NdT) appear.

Electromagnetic means of testing are one option among
many others, here from MHz to THz operation frequencies
depending upon the characteristics of the laminates. Also due
to similarities of organization, methods developed for such
composites extent to photonic crystals, e.g., [1]. To succeed,
both accurate forward models and stable inversion algorithms
are needed, as shown for fibers in air [2], [3], [4].

The laminates which one is concerned with are made of
finitely-thick planar layers set between two homogeneous half-
spaces. Within each layer (matrix), longitudinally-orientated
circular cylindrical fibers of same cross-section are periodi-
cally embedded to infinity along the transverse direction, fiber
orientations being expected to differ from one layer to another.

For most methods for analyzing periodic structures as
in aforementioned contributions and references including in
particular [5], the Floquet theorem is applied from the field
pseudo-periodicity so that the field analysis can be concen-
trated onto the primary unit. However, since the periodicity
is destroyed from absent fibers, this prior knowledge becomes
irrelevant. This can be tackled by introducing an auxiliary new
periodic structure with each unit (supercell) defined as multiple
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fibers and defects in the central area. Enlarging the number of
contained fibers, the field within, above and below the central
region of the supercell should converge to the true field.

As is well-known, compressive sensing uses the sparsity of
signals to achieve high-resolution imaging [6]. Since, in the
cases here, only a few fibers are missing within the explored
region, sparsity lies with the fiber distribution, and that can be
employed to locate them.

Based on an imaging model derived from the Lippman-
Schwinger field integral formulation [2], an optimization prob-
lem about the fiber distribution can be proposed by regulariz-
ing the sparsity with /;-norm and constraining the data residual
by l2-norm. In addition, a preconditioning procedure is applied
on the sensing matrix to deal with ill-posedness.

In parallel, standard one-shot MUSIC imaging, for which
sparsity is inherent due to the assumption of well-separated
pointwise scatterers, is developed and compared.

II. ANALYSIS OF ELECTROMAGNETIC BEHAVIOR

The structure is sketched in Fig. 1. An infinite set of circular
cylindrical fibers orientated into the y direction is embedded
in a planar layer with upper and lower interfaces z = a and
z = b. They are periodically arranged with period d and of
radius c. The space is divided into Ry and Ry_ for regions
above and below the layer, R for the matrix containing the
fibers, and R; for fiber [. All materials are linear isotropic.

Relative dielectric permittivity and magnetic permeability
are €5, (5, j = 04,0—, -, 1, - standing for null. Fibers are with
€ = €5, 4 = py except absent ones with then ¢ = ¢, y; = p,
subscript f denoting fiber material.

Two types of sources are considered thereafter (harmonic
time-dependence —iwt implied): a E-polarized (TM) plane
wave obliquely illuminating the laminate with angle #*¢ and
field Ei"“(r) = gE;eileor=Folz=a)l v = (z, 2) observation
point, ag = ko sin6*"¢, By = ko4 cos 0"¢, k; wavenumber,
and E;”C amplitude set as unity; a line source set inside the
fiber with position ry and expression 1/4iH(()1) (ki |r —rg])
(Hél) first-kind Hankel function of order 0).
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Fig. 2. Sketch of the auxiliary periodic structure based on supercell, L = 3.

Cross-section of single-layer laminate with a missing fiber.

Without fibers missing, the structure is periodic and the field
analysis can be concentrated onto the primary unit by applying
the Floquet theorem. Yet, as said, the periodicity is destroyed
by absent fibers.

An auxiliary new periodic structure can be introduced as
follows: truncate the laminate to get a cell (called supercell)
including multiple fibers and missing fibers located within
the central area, as the region bounded by dashed lines in
Fig. 2; repeat this cell along the line connecting the centers of
fiber cross-sections. A new periodic structure follows and its
analysis can be led accordingly.

Let the number of contained fibers (including the missing
ones) in the supercell be L; according to the Floquet theorem,
E,(z+ D,z) = By (z,2) e'P [7], D = Ld, then the field
above and below the layer can be plane-wave expanded as

ESJF(F) = Z [51,67“3?(27“) + rpewgﬂzfa) et (1)
pEL

GED BT @)

PEZ

where 7, and ?,, represent the reflection and transmission coef-
ficients for the p-th plane-wave component, §, is a Kronecker

delta, a, = ag +2mp/ D, By, = 1/ (k;)? — a2
The field in the matrix is a combination of field scattered
by the layer interfaces and fibers. Representing the field inside

and in the vicinity of the [/-th fiber via multipole expansions,

Ey(7) = 3 [Al T ) + BLHP (k)] e, 3)

meZ

E,(7) = Z[C T (ki) + QL H

mEeEZ

W lry)] e, @)

where Q' = xi/idJ (kyrf)e” "9 are for the line source
inside the fiber, (r;,6;) and (r},0;) are local coordinates of
r and r, with respect to the system originated at the center
of the [-th fiber, and J,,, and H,(,}) are the first-kind Bessel
and Hankel function of order m. x; valued to 1 implying the
presence of interior source, and 0 otherwise.

Making use of the periodic Green’s function
1 1 .
- = ilapz+Bplz]]
Gl = 35 2 5° (5)
PEZ

and applying the Green’s theorem along the boundary of the
primary supercell, the field in R can be expressed as

Ey(f‘) :Z [fpfefiﬁpz + f;ei/jpz] eiapz

rel (©)
DN
PEZ MEZ
K&, = 2(=i)me= % [(DB,), Fh = Y Ble o' is

the discrete Fourier transform of B,ln. With (1), (2) and (6),
matching the field at the layer boundaries yields

Tp = Z ZHl Bl + 6, |wp(w 2+ - wgf) cos(,() o
meZ l=1
—z'(wp"’wg_ — wf,) sin(ﬂpg)} /A,
L
= Z Z =Bl + 26wy Twp /Ay ®)
meZ l=1

and the solution of f,~, f," as a function of F?, (or BY).

As the incoming wave upon the [-th fiber is composed of
fields scattered by all other fibers and layer boundaries, the
Rayleigh identities can be obtained in the same way with (6),

L
AL =N (T S T ) Y > SE LB

PEZL j=1n€z ©)
where Jip = (i)™exp(Fimb,), and S , is the relative

lattice sum [8] weighting the contribution from the j-th fiber.
Substituting the expression f,(BL,) and f, (BL,) into (9),
a linear relationship between A! and B! is established,

L
=Y > Skl +9,) Bl + K,

j=1nez

(10)

Together with another one from the fiber boundary conditions,

By, = Ry, Al + T,,Q0, (11)

the solution of B! can be written as
B=(1I-RO) ' RK+TQ) (12)
where column vectors A = [AL ], B = [B.], K = [K.],
Q = [Q.,] and matrix © = [SL], + VLI | R = [R,],

T = [T], and 7, and ¢, can be calculated by (7) and (8).
ITI. CONSTRUCTION OF THE IMAGING MODEL
A. Imaging model for localizing the missing fibers

The disturbance of the background field due to missing
fibers can be evaluated thanks to the Lippman-Schwinger
integral formulation

B, (x) Z

G (r,r) (k7 (r') dr’

13)

- ka‘) Ey
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where E, denotes the total field by the well-organized struc-
ture and parameters with '~ above are associated with the
disorganized one, D; is the cross-sectional area of the [-th
fiber, and G (r,r') is the field response (Green’s function)
when the line source is at r’ and the laminate is well-organized.
Since k; = ky for existing fibers, which cancells the involved
integral, only absent ones contribute to the disturbance.

Let the observation point r be above the layer. Combining
(1), (7) and (12), G (r,r’) follows with ¢, = 0 and x; = 1,

1 o
G(r,r') = " > @ (x) T (kprp)e
meZ

(14)

with ® = TTI(I-RO) ' T, T = {ei(%“ﬁﬁ*(ka))}, and
II = [IT,].

Letting E, = Y, ., CL Ju(kir)). and substituting this
expression and G (r,r’) into the integration of (13), one has

By (r) = By (r) = 3 ®,(x)d,, (15)
meZ
where ¢!, = [kiJmy1(kic) Jm(kfc) — kpJm(kic) Jmi1 (kfe)]
-eCL /(2i), which is nonzero when the [-th fiber is defective
and 0 otherwise. Denoting q = [¢,], (15) can be written as

E, (r) - E, (r) = ®q. (16)

Assuming N, sources and N, receivers, for the v-th source,
the sampling data of E, (r) — E, (r) can compose a column
vector y, with dimension N,, v = 1,2, ..., N,. Taking y,
as columns, the data matrix Y can be constructed as Y =
[Y1,¥2,.--,¥n,]. Since @ is invariant with the sources, an
initial imaging model can be derived as

Y = &F, (17)

where F = [q1,q2,...,qnN.]-

B. Zero-mode approximation

Since the number of involved modes cannot be infinite in
multipole expansions, °°°_ __ s truncated as 3, - with
M = int ((kfc)1/3 +kfc> [2], in which int is the opera-
tor yielding the integer part. With a low-frequency source,

(kfc)l/?’ + ky¢c can be smaller than 1, then M tends to 0.
An approximated imaging model follows by letting M = 0:

Y = &°F° + N, (18)

where superscript 0 identifies matrices only including the zero-
th mode, and N is the resulting approximation error.

Benefiting from this approximation, the dimensions of the
matrices involved are considerably reduced, which lightens the
burden of the following imaging procedures.

Taking into account additive noise N, in the data, and
setting Z = ®Y, S = F? and N = NY + N, for convenience,
one gets the imaging model in the noisy case as

Y =ZS+N. (19)

The goal is to find the solution of S since the indices of
missing fibers are given by the positions of its non-zero rows.

IV. IMAGING METHODS

Standard MUSIC and the sparsity-based method are adopted
to solve for S in (19). The literature about the former is
abundant, [9], so only the latter is discussed in some detail.

A. MUSIC

Singular value decomposition (SVD) of the matrix Y reads
asY = ULVY, where * denotes the conjugate transpose,
and L is a diagonal matrix composed of the singular values.
According to the distribution of singular values [10], U is
divided into signal U, and noise U,, spaces. The estimation
function of interest is

gz
Z;U,UxZ;’
where Z; indicates the [-th column of Z. Since the denomina-
tor goes to zero when the [-th fiber is missing, they are shown

as peaks in the curve of vector § = [3'].

(20)

B. Sparsity-based method

In general applications, only few fibers are faulty (missing),
which leads to the sparsity of S, meaning a few nonzero ele-
ments in S. To take advantage of this strong prior knowledge,
a regularization can be enforced on S by minimizing its [-
norm, which counts the number of non-zero elements, and the
solution can be obtained by the following optimization:

min J (S) = ||Y — ZS|3 + 7(ISl)o, @1)

where the overline denotes the vectorization by taking columns
one under another, Z = I ® Z, ® denotes the Kronecker
product, and 7 is the parameter trading off sparsity and data
residual constrained by the [o-norm. As usual a large 7 means
that S tends to exhibit sharp peaks, whereas a small one is
appropriate to little data pollution.

Yet, solving (21) is qualified as a NP-hard problem [11],
requiring enumeration of all possible locations of nonzero
entries in S. According to [12], optimization based on /;-norm,

min J (S) = ||Y — ZS|3 + 7[|S])1, (22)

can also exactly recover S when sufficient data are collected,
the solution being a saddle point due to convexity. To avoid
the singularity of the /;-norm at the origin, a smooth approx-
imation to the [;-norm is used:

S~y (j®),f +s)1/2~

=1

(23)

where ¢ is a positive constant in case of zeros in S.
Taking the gradient of the penalty function in (22) and
equating to zero yield the following estimator,

(2?*% +7A (SW)) S+l — 97"y, (24)
_ _ ~1/2
where A(S™) = diag{(\(S("))j|2 + 5) }. Equation (24)

defines the iterate S+ as solution of a linear system of
equations gotten, e.g., by a Conjugate Gradient algorithm.
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Fig. 3. Validation of modeling with different incident angles.

Note that € should be small enough not to affect the behavior
of the solution; however, too small € may cause ill-conditioned
ABS™). & = 1073 - max (S(™) is shown to be proper
by numerical experimentation, where max (S(”)) denotes the
maximum element of S(™).

As a further step, to deal with the ill-posedness of the
sensing matrix, denoting the SVD of Zas Z = UzLzV7,
then mapping Z onto the matrix P = (LQZ + CI) —1/2 U7 [13]
yields a modified imaging model

PY = PZS + PN, (25)
where ( = 1073 - max (L%) is for the ill-conditioned L.
Thus S can be retrieved by solving the /;-norm optimization
problem with PY and PZ instead of Y and Z.

V. NUMERICAL RESULTS

Tests are made with a laminate in air composed of an epoxy
matrix (e = 3.6, loss tangent tan § = 0.02) and graphite fibers
(e = 12, conductivity o = 300 S/m) (just mention that testing
of graphite-fibered composites is of much interest [14].)

First, the electromagnetic model is validated with the soft-
ware COMSOL [15], letting boundaries configured as periodic
so as the supercell concept can be simulated. Comparisons are
led with L = 13, as illustrative example.

Letting A\"¢ = 10d and varying the incident angle from 0
to 7/2, the energy reflection and transmission coefficients as
defined in [16], are shown in Fig. 3, and good agreement is
observed. With #¢ = ( and varying the frequency, d/\"
ranging from 0.01 to 1, results as line graphs in Fig. 4 also
show a good fit. Emphasize that, though COMSOL can provide
field solutions, the mesh size should be small enough for
accuracy, since it runs with a finite-element method, bringing
heavy time cost. With \""¢ = 10d and §"*¢ = /4, as an
example, COMSOL costs 27 times the proposed approach.

A simulation is now designed to test the convergence of the
field in the central area of the supercell vs. L. Set 100 equally
spaced receivers along the line z = 2d, —5d < x < 5d. As-
sume L changes according to formula (2k + 1), k =1,2,...,
the convergence can be judged from relative convergence
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Fig. 4. Validation of modeling with different frequencies.
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Fig. 6. Imaging of absent fibers with indices —1 and 1.

EITOrs as 7, = IMax; ‘1[’14-1 — 1/_1;1’/‘1/_%4_1‘ where 7,/7% denote
the data collected by the j-th receiver when L = (2k + 1).
The field is said to be convergent if 74 is below 1073,
Simulation results vs. A\™¢ = 10d are shown in Fig. 5.
Relative errors have fluctuations but keep the descent direction
with increased L and the convergence number is seen as 35.
Taking L = 43, somewhat larger than 35 for safety, 4 plane
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Fig. 7. Imaging of absent fibers with indices [—2,—1,1, 3].

waves with angles [—n/3,—m/4,—x/6,0] and 20 equally-
spaced receivers along the line z = 2d,—5d < x < 5d are
chosen to image the absent fibers. Gaussian noise is added with
30 dB signal to noise ratio. Sparsity-based reconstruction is
run with parameters 7 = 0.01, and the quantity displayed is
the vector § = [HSle] S! the I-th row of S.

Assuming fibers with indices from —23 to 23, estimation
of absent fibers with indices —1 and 1 is illustrated in Fig. 6
where vertical dashed lines denote the right solution. Both
MUSIC and sparsity-based algorithm (marked as Sparsity) can
well retrieve the location of missing fibers.

Increase of their number to 4 with indices [—2,—1,1, 3]
leads to the result shown in Fig. 7. Missing fibers 1 and
3 merge as one peak with MUSIC, while they can be well
distinguished by the iterative sparsity-based approach.

As for the effect of preprocessing in (25), an imaging result
of sparsity-based algorithm without it is given in Fig. 8 which
shows the —1st and 1-st fiber are not correctly detected.

VI. CONCLUSION

Investigations about fibered laminates with missing fibers
are performed. An auxiliary periodic structure with supercell
unit is introduced so that the field analysis can be operated
with methods tailored for periodic structures. To locate the
missing fibers, imaging models are derived from a Lippman-
Schwinger integral formulation, and simplified by using a
zero-mode approximation.

Both standard MUSIC and iterative methods within implicit
(MUSIC) or explicit (iterative solution) sparsity contexts are
applied to locate the missing fibers (in effect, a distribution
of index in a succession). However, for the sparsity-based
approach, the structure of S, i.e. exhibiting a few non-zero
rows, is lost after the vectorization. In [17], the sparsity
of the covariance matrix is exploited in direction of arrival
estimation, and work along that line is to be envisaged..

Investigations on the multilayer structure with fibers pos-
sibly missing in several layers are also foreseen. In addition,
how do homogenization methods —which in properly chosen
operation frequency bands and for possibly specific materials

061

Normalized estimation

-20 -10 0 10 20
Index of fibers

Fig. 8. Estimation of absent fibers of indices -1 and 1 without preprocessing.

make the missing fibers look like small isolated scatterers
within a homogenized slab medium— compare with previous
results in terrms of imaging and resolution is to be considered.
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