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Abstract—Recent results have revealed that MIMO channels
at high carrier frequencies exhibit sparsity structure, i.e., a few
dominant propagation paths. Also channel parameters, namely
angular information and propagation delay can be modelled with
the physical location of the transmitter, receiver and scatters.
In this paper, we leverage these features into the development
of a single base-station localization algorithm, and show that
the location of an unknown device can be estimated with
an accuracy below a meter based on pilot signalling with a
OFDM transmission. The method relies on the utilization of
the “Adaptive-LASSO” optimization method, in which an ℓ1-
based minimization problem is solved by adapting the sparsifying
matrix (dictionary) and the sparse vector jointly. Then the
location of the device is estimated from the parameters of the
sparsifying matrix. Finally, the positioning method is evaluated
in different channel setting utilizing a ray-tracing channel model
at 28GHz.

I. INTRODUCTION

For the last decade, location-awareness has been the

paradigm pursued in many researches on sensor networks,

Internet-of-Things (IoT), and more generally, positioning ap-

plications. [1] With 5G, the fifth-generation of mobile system

[2], [3], there is a surge of interests towards location-awareness

for mobile communications. In contrast to the past, new

technologies such as millimeter-wave (mmWave) and three

dimensional (3D) multiple-input and multiple-output (MIMO)

quest for precise and real-time user-equipment (UE) location

information for the development of highly directional [4] and

dynamic beamforming [5], [6].

However, if positioning is based on dedicated technologies

such as Global Positioning System (GPS), Wi-Fi, ultra-wide

band (UWB) and Bluetooth, then the cost (data traffic, latency

and energy consumption) of interfacing the mobile system with

external technologies can be prohibitive. For this reason, it is

desirable to directly develop a mobile-network based position-

ing although some technology challenges has to be addressed

to achieve high accuracy and lightweight integration.

In this paper, we propose a novel positioning approach

based on MIMO-orthogonal frequency-division multiplexing

(OFDM) transmission at the mmWave frequency band. Also,

we consider a single-base station solution in order to reduce

the energy consumption due to a multi-point cooperation [7].

The key of the proposed technique is to leverage the

sparsity of a mmWave channel [8], i.e., that signal propa-

gates only through a few paths, into the estimation process.

More specifically, we rely on a multidimensional sparse rep-

resentation of the channel obtained with the adaptive-least

absolute shrinkage and selection operator (A-LASSO) [9],

[10] algorithm and develop a channel-based location mapping

and a line-of-sight (LOS)-based positioning via a Gaussian

mixture model (GMM) classification technique. Simulation

results have shown that the proposed approach can provide

sub-meter accuracy with relatively small number of antennas

and signal bandwidth, though only in LOS channel conditions.

The rest of the paper is organized as follows. In Sections

II, we present the system model. In Section III, we explain

the position estimation problem within a single base-station

scenario and detail the technique to solve the problem. In

Section IV, results of the proposed positioning method are

shown in LOS and non-line-of-sight (NLOS) scenario via ray-

tracing -based simulation for an office environment. Finally,

in Section V, concluding remarks are given.

II. SYSTEM MODEL

We consider a 3D positioning problem of a UE using one

small-cell base-station (BS). We assume an up-link trans-

mission where the UE sends an OFDM pilot-signal with

bandwidth Bp < B, where B is the maximum transmission

bandwidth, e.g., 200MHz. The OFDM signal is designed with

NFFT subcarriers. The number of transmit and receive antennas

are N = 1 and M , respectively. The BS location is known a

priori and given by b ∈ R
3, whereas the UE position, denoted

by x ∈ R
3, is yet to be determined.

In order to obtain a 3D location estimate, the BS is

equipped with two-dimensional antenna array, e.g., a uniform

rectangular array (URA) deployed in the yz-plane, with a

sufficiently large number of elements. Also, to minimize the

cost and the energy consumption of the BS transceiver, the

hybrid analog-digital architecture depicted in Figure 1 [8] is

utilized. We consider MBB independent digital paths, each one

comprising an analog-to-digital converter, amplifiers, a phase-

shifter based analog beamformer and m antenna elements. The

digital beamformer is modelled with a matrix W ∈ C
M×Mt

where Mt is the number of combining vectors.

In the frequency domain, the received signal is given by

Y =
√
ρWHAH(HX+N), (1)
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Figure 1. Analog-digital architecture of the receiver

where (·)H is the transpose conjugate, ρ is the average received

power, A ∈ C
M×MBB is the “total” analog beamformer

matrix that is block-diagonal with the i-th block given by

the vector ai ∈ C
m and |aji| = 1, H , [h1, · · · ,hN ]

is the MIMO channel matrix, N < NFFT is the number of

pilot-subcarriers, X ∈ C
N×N is a diagonal matrix where the

diagonal elements are the pilot symbols, and N ∈ C
Mt×N is

the noise matrix with nij ∼ CN (0, 1) as a complex-Gaussian

random variable.

At the n-th subcarrier, the channel vector is modelled as

a frequency-selective wideband clustered multiple-input and

single-output (MISO) channel, in which Nt is the number of

clusters and Nq is the number of propagation paths per cluster

[11]. Mathematically, the MISO channel hn is given by

hn =

√

M

NtNqNFFT

Nt
∑

t=1

Nq
∑

q=1

αq,taR(φq,t, θq,t)e
−j2π

nτq,tB

NFFT ,

(2)

where the index (·)q,t refers to q-th path of the t-th cluster,

φq,t, θq,t are the azimuth and elevation of the angle of arrival,

τq,t is path-delay, αq,t ∼ CN (0, σ2
q,t) is a complex Gaussian

random variable modelling the complex gain of a path with

energy σ2
q,t and aR (x, y) is the receiving steering vector

aR (x, y) = e−j 2π
λ

k
T(x,y)P, (3)

where (·)T indicates transpose, P ∈ R
3×M is the matrix con-

taining the (3D) location of antenna elements1 and k(x, y) ,
[cos(x) cos(y), sin(x) cos(y), sin(y)]T.

III. SINGLE BS POSITIONING

Using a single reference point, namely the location of a

base-station, x can be computed as a function of the LOS

path-delay, azimuth and elevation angle of arrival as

x = b+ r
[

cos(φ̄) cos(θ̄), sin(φ̄) cos(θ̄), sin(θ̄)
]T

, (4)

with φ̄ = φq̄,t̄, θ̄ = θq̄,t̄ and, finally, r = cτq̄,t̄, where c equals

to the speed-of-light and (·)q̄,t̄ refers to the LOS path index.

More generally, we can formulate a position estimation

problem based on the received signal Y as

(x̂, ∆̂, β̂) = min
β∈C

L,x∈R
3,

∆∈R
3×L

‖Y −WHAHH(x,∆)X‖22, (5)

1Coordinates are given with respect to the location of one element set as
origin.

where

H(x,∆)=

[

L
∑

l=1

βlãR(x, δl|1), · · · ,
L
∑

l=1

βlãR(x, δl|N)

]

, (6)

ãR(x, δq,t|n) = e
−j 2π

λ

(x−b+δq,t)
T

‖x−b+δq,t)‖2
P
e
−j2π

nB‖x−b+δq,t‖2
cNFFT , (7)

and ∆ ∈ R
3×L is a matrix in which the l-th column is given

by a location-shift δl and L is the number of components in

which each channel vector hn is decomposed.

This minimization problem is very difficult to solve since

the terms in the summation (6) are given by the product of

the variable βl and the non-convex function ãR(x, δl|n) and,

additionally, the solution may depend on the selection of L. In

order to circumvent these challenges, we propose an indirect

approach, in which we exploit the channel parametrization

given in [9], [10] to generate a set of location images {x̃l},

with x̃l , x + δl, and estimate x based on the cluster of

images associated to the LOS link.

A. Mapping from MIMO-OFDM Channel to Location Images

Let us consider the vectorized form of the MIMO-OFDM

channel H, i.e., h , vec(H) and express h with the linear

model h = Ψz, where Ψ ∈ C
NFFTM×L is referred to as

“dictionary” and z ∈ C
L is the representation of h in Ψ [9],

[10]. A column vector of the dictionary, hereafter referred to as

atom, corresponds to the vectorization of a multidimensional

spatial-temporal discrete Fourier frequency. More specifically,

we compute Ψ = D(Ξ), where Ξ ∈ R
U×L
+ is the “dictionary

variable” and D(Ξ) is the “dictionary function” defined as

D(Ξ) ,

[

U
⊗

i=1

v(ξi1,Ki), · · · ,
U
⊗

i=1

v(ξiL,Ki)

]

, (8)

where ξij is the ij-th element of Ξ,
⊗

indicates the “total”

Kronecker product of U vectors and v(x, y) ∈ C
y is the

discrete complex-frequency

v(x,K) =
[

1, · · · , e−j2πx(K−1)
]T

, (9)

with x ∈ [0, 1) and K ∈ N.

Inside the dictionary function (8), the parameter U refers

to the number of dimensions used to represent the spatial-

temporal discrete frequencies. For instance, if the MIMO-

OFDM channel can be represented with a bi-dimensional

spatial frequency and a mono-dimensional Fourier frequency,

U equals to three. The value of Ki, instead, depends on the

specific problem setting. For instance, with NFFT subcarriers,

the Ki parametrizing the mono-dimensional Fourier frequency

equals to NFFT. Whereas, if we consider a URA, the values of

the Ki modelling the spatial-frequency are given by number

of rows and columns of the antenna structure.

As shown in [9], [10], the l-th column vector of Ξ, denoted

by ξl, relates to the angle of arrival2 and time delay of a

channel path. Therefore, each ξl can be mapped to a location

2If multiple antenna system is used for transmission, the vector
boldsymbolξl will include also elements related to the angle of departure.
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x̃l. For instance, following the aforementioned example of

URA, the map function is given by

x̃l = b+











c
√

1−u2
2l

∆f
cos(asin(u1l) sec(sin(u2l)))u3l

− c
√

1−u2
2l

∆f
sin(asin(u1l) sec(sin(u2l)))u3l

− c
√

1−u2
2l

∆f
u2lu3l











, (10)

where ∆f = B/NFFT and

uil =

{

2ξil, 0 ≤ ξil < 0.5,
2ξil − 2, 0.5 ≤ ξil < 1.

(11)

In practice, the dictionary variable Ξ is not known, but it can

be estimated from the received signal Y with the A-LASSO

technique [9], [10] that solves the optimization problem

(ẑ, Ξ̂) = min
z∈C

L,

Ξ∈R
U×L

λ‖z‖1+ 1
2‖y − (XST

f⊗WHAH)Ψz‖22,

s.t. Ψ = D(Ξ), ξi ≤ ξij < ξ̄i, ∀ij, (12)

where ‖ · ‖q is the q-norm, ⊗ denotes the Kronecker product,

y = vec(Y), ν is a parameter that controls the sparsity

(≈ 1/
√
NFFT), ξi and ξ̄i are the minimum and the maximum

values of ξij that can be simply set ξi = 0 and ξ̄i = 1, and

Sf ∈ R
NFFT×N is the “frequency selection” matrix3 used to

select the the pilot frequency from the NFFT subcarriers.

B. LOS Classification and Positioning

Once the variables from the dictionary have been mapped

to a set of UE images x̃l, the next operation is to classify

them into LOS and NLOS points. In this regard, the key

is the theoretical underpinning of the dictionary optimization

performed in the A-LASSO algorithm.

In fact, the dictionary atoms are computed based on a re-

sampling-randomization strategy that follows the heuristic that

the higher the value of |zi|, i.e. the i-th element of z, the

higher is the “importance” of the i-th atom. Subsequently,

the A-LASSO yields a dictionary with a support concentrated

around the most dominant spatial-temporal frequency repre-

senting the channel. In other words, the algorithm provides a

denser set of ξ̃l at those values corresponding to the strongest

channel path, typically the LOS path when the signal is

transmitted at high carrier frequency. [4], [12]

Therefore, the classification method consists of clustering

the set of ξ̃l, or equivalently the locations x̃l’s, and consider

the LOS cloud as the cluster with the highest node density.

To do so, we propose a classification based on a GMM that

solves the optimization problem [13]4

{µ̂i, Σ̂i, γ̂i} = max
{µ̂i,Σ̂i,γ̂i}

L
∏

l=1

Kg
∑

i=1

γip(x̃l|µi,Σi), (13)

3The n-th column of Sf has only one non-zero element, i.e., 1, at the
row-index corresponding to the n-th subcarrier index.

4We utilize a standard Expectation-Maximization (EM) method to solve
the maximization problem.
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Figure 2. The indoor scenario used in simulations with the illustration of
Gaussian mixture components.

where

p(x̃l|µi,Σi) =
1

√

(2π)3|Σi|
e−

1
2 (x̃l−µi)

T
Σ

−1
i

(x̃l−µi), (14)

and Kg is the number of Gaussian components, which can be

set to small (e.g., 2 or 3) based on priori information of the

environment as well as the carrier frequency (the higher the

frequency, the lower is Kg).

Notice that we prefer to use the set {x̃l} rather than

{ξl} as the dimensions of the data points is fixed to three

(two if we perform two-dimensional positioning). Finally, to

perform positioning, we select the Gaussian component with

the highest cluster weight γi and obtain the estimate of the

UE location related to that component as

x̂ = µ̂s, with s = argmax γi. (15)

For the sake of illustration, Figure 2 shows an outcome

of the estimation process. The cross refer to the locations

of the image points x̃l’s obtained from the mapping of the

dictionary variables ξ’s. The ellipses are derived from the

estimated covariances utilizing the GMM clustering, the real

location of the UE is depicted with the red circle and the blue

square is the estimated location.

IV. SIMULATION RESULTS

We consider an indoor scenario, namely, an office envi-

ronment, and investigate the performance of the positioning

algorithm in LOS and NLOS channel conditions. Figure 3(a)

and Figure 3(b)) show the location of the UE (transmitter) and

BS (receiver) in the two aforementioned settings.

The MIMO-OFDM link is operating at 28 GHz carrier

frequency and the total channel bandwidth is B = 200 MHz.

The OFDM symbol is designed with NFFT = 2048 subcarriers,

of which only N < NFFT are used for pilot transmission.

The ray-trace simulator models the propagation paths using 4
interactions of specular reflection and diffraction.

We consider a URA at the receiver with 8 × n, n =
{1, . . . , 8} elements deployed in the yz-plane and equispaced
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Figure 3. Example of the simulation scenario with receiver (RX), transmitter
(TX) and ray-trace paths (red lines) shown (a) in LOS scenario and (b) in
NLOS scenario. The receiver and the transmitter heights are1.8 m and 0.4 m,
respectively. The plots also illustrate the position estimates (the “x” marker).

by λ/2. Furthermore, we assume that the UE can transmit only

within a spherical-sector defined by the azimuth and elevation

intervals [−π/2, π/2] (model with a back-reflector), whereas

the BS can receive within the azimuth and elevation sectors

[−π/4, π/4]. Using this realistic sectorization we obtain a

channel with a few number of paths as, for instance, illustrated

in Figure 3, where solid and dashed lines refer to the effective

and removed channel rays, respectively. Subsequently, the

channel is very sparse.

We evaluate the root-mean-square error (RMSE) on the

estimation of the transmitter location as a function of the

signal-to-noise ratio (SNR), the URA structure and the pilot

bandwidth Bp. Also, we investigate the impact of the hybrid

analog-digital architecture on the positioning performance by

testing two different beamforming modes, namely, the full-

cycle and half-cycle beam switching [10].

Figure 4 shows the position error as a function the SNR

with different antenna structure and beamforming strategies.

Generally, it is shown that the localization error improves with

the SNR in all simulation settings, but the 8×2 with half-cycle.

More specifically, it is noticed that a sub-meter accuracy can

be achieved at the high-SNR with a 8× 8 and 8× 4 URAs.

Also, as expected, the proposed algorithm can not meet

the sub-meter requirements in NLOS (with LOS blockage)
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Figure 5. Comparison of the channel estimation algorithms as function of
receiver antennas (RX URA structure).

channel conditions as the current estimation model does not

account for path reflections. In this regard, the authors are

currently investigating a solution to this problem.

Figure 5 shows the performance as a function of number

of antenna elements in URA structure. The target sub-meter

accuracy is already met with 8 × 4 elements with full and

reduced cycle settings after 20 dB SNR. Also, it can be noticed

that there is not a significant gain by increasing the number of

elements in the z-direction. Most probably, this is a specific

result related to choice of the UE and BS locations.

Finally, Figure 6 shows the location error as a function of the

SNR and signal bandwidth. In this study, the antenna structure

is fixed with 8 × 8 elements. The most important outcome

is that a position error less than one meter can be achieved
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at the low-SNR régime, for instance with Bp = 20 MHz

(10%B). The reason is two-fold. First, the dictionary opti-

mization performed in the A-LASSO algorithm operates as

a de-noising technique. Thus, the set of location images is

already cleared from many outliers due to the noise. Second, as

the channel is sparse and, essentially characterized by a strong

LOS component, the LOS cluster can be easily identified at

the low-SNR, too.

V. CONCLUSIONS

In this paper, we proposed a novel positioning method with

a single base-station using mmWave transmissions and large

antenna arrays. The key is the multidimensional sparse repre-

sentation of the channel obtained via the A-LASSO algorithm,

which enables a direct mapping of channel parameters to

expected target locations. Simulation results have shown that

the proposed approach can provide sub-meter accuracy with

relatively small number of antennas and signal bandwidth,

though only in LOS channel conditions.

Future work shall investigate a generalization of the pro-

posed method to account for NLOS paths as well as to

provide confidence bounds to the estimated location by using

the theoretical underpinning of the Circular-based Interval

SMACOF (CIS) algorithm [14].
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