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Abstract— In this study we investigated how directed 

functional connectivity can be used to localize the seizure onset 

zone (SOZ) from ictal intracranial EEG (iEEG) recordings. First, 

simulations were conducted to investigate the performance of two 

directed functional connectivity measures, the Adaptive Directed 

Transfer Function (ADTF) and the Adaptive Partial Directed 

Coherence (APDC), in combinations with two graph measures, 

the out-degree and the shortest path, to localize the SOZ. 

Afterwards the method was applied to the seizure of an epileptic 

patient, recorded with 113-channel iEEG and localization was 

compared with the subsequent resection that rendered the 

patient seizure free. We found both in simulations and in the 

patient data that the ADTF combined with the out-degree and 

shortest path resulted in correct SOZ localization. We can 

conclude that ADTF combined with out-degree or shortest path 

are most optimal to localize the SOZ from a high number of 

iEEG channels. 

Keywords—Seizure onset zone localization; directed functional 

connectivity, epilepsy, intracranial EEG 

I.  INTRODUCTION 

Epilepsy is a neurological disorder characterized by the 
occurrence of spontaneous seizures that affects approximately 
1% of the world population. Epilepsy is considered a network 
disorder, because multiple brain regions can be involved 
during a seizure [1]. The clinical symptoms of the seizure are 
related to which brain regions are involved. The brain region 
from where the seizure originates is called the seizure onset 
zone (SOZ) [2].  

During the presurgical evaluation, the epileptogenic focus 
is localized and eventual overlap with eloquent brain tissue is 
assessed to decide the most optimal treatment for the patient 
[2]. Here, the most important medical investigations are video-
EEG monitoring, MRI, interictal PET and ictal SPECT. In 
approximately 15-25% of patients that undergo presurgical 
evaluation, invasive EEG monitoring is necessary to gain 
valuable information about the SOZ and the spreading that is 
not clear from the non-invasive examinations [3]. During the 
invasive EEG monitoring electrical brain activity is recorded 
from depth electrodes or stereo EEG electrodes placed inside 
the brain’s parenchyma and/or from subdural grids on top of 
the cortex. Which brain regions are targeted is decided based 
on the non-invasive examinations. Due to the rapid spreading 
of the epileptic seizure activity in the brain, it is a difficult task 
to identify the SOZ.  

The visual interpretation of the intracranial EEG (iEEG) is 
the clinical standard for mapping focal seizures targeted by 
epilepsy surgery. However, it is labor-intensive and prone to 
localization errors due to interpreter dependency. Functional 
brain connectivity can help to localize the SOZ [4]. It 
estimates how brain regions functionally interact by 
investigating biomedical recordings such as EEG and 
functional MRI. Functional connectivity is defined as the 
study of temporal correlations between spatially distinct 
neurophysiological events [5].  

Multivariate, parametric and frequency-based connectivity 
measures related to the concept of Granger-causality have 
been shown to map the SOZ with promising results [6, 7]. 
However, these methods have generally been applied to a 
limited number of iEEG channels/time series (<50-60), often 
selected based on visible involvement in the course of a 
seizure. This is because this analysis is normally very 
computationally intensive. Here, we tested whether 
connectivity estimates based on unselected complete iEEG 
time series from a high number of iEEG recordings can be 
useful for accurate SOZ mapping. Furthermore, we assess 
which connectivity measures in combination with which graph 
measures are the most suitable to localize the SOZ.  

In the first part, simulations are performed to quantify the 
performance of the different connectivity measures in 
combination with graph measures. In the second part, ictal 
iEEG recordings from an epileptic patient are used to validate 
the performance of SOZ localization from a large number of 
channels using the different proposed measures. 

II. METHODS 

A. Seizure simulations 

We simulated multiple seizures as recorded in 128-channel 
intracranial EEG. First, there are 2s of baseline activity after 
which the seizure starts in a randomly chosen channel, the 
simulated SOZ, and lasts for 3s.  The seizure spreads from this 
channel to max 3 other randomly chosen channels (the 
propagated channels) with an onset delay between 1 and 250 
ms and a sample delay of 1 to 5 samples. From the propagated 
channels the seizure spreads subsequently again to max 3 
other channels until 32 channels participate in the seizure (1 
SOZ channel + 31 propagated channels). The baseline activity 
is simulated as 1/f noise [8], while the seizure activity is a 
time-varying sinusoid starting at 12 Hz at the beginning of the 
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seizure and 8 Hz at the end of the seizure. The signal-to-noise 
ratio (SNR) of the seizure activity compared to the baseline 
activity was -5, 0, 5 or 10db. We selected 32, 64, 96 or 128 of 
the 128 channels before SOZ localization to investigate the 
effect of increasing the number of electrodes. An overview of 
the simulation parameters can be found in table 1. An example 
of a simulated connectivity graph and corresponding seizure is 
shown in Fig. 1. 

 
Fig. 1. Simulated ictal network and intracranial EEG recordings. In this 

example node 91 is the SOZ. The iEEG signal of the SOZ is depicted in red, 

while the signals of the nodes that are active during the seizure are in blue.  

TABLE I.  SEIZURE SIMULATION PARAMETERS 

Parameters Value 

Sampling frequency 200Hz 

Number of channels 128, 96, 64, 32 

Number of ictal channels 32 

Baseline duration 2 s 

Seizure duration 3 s 

Sample delay Random (1 to 5 samples) 

Onset delay Random (1 to 250 ms) 

Max number of propagated channels 3 

SNR -5,0, 5 and 10 dB 

Seizure signal frequency 12 to 8 Hz 

Number of simulations 320 

B. Patient data 

A 113-channel ictal iEEG epoch was analyzed from a 
patient who had undergone a right frontoparietal opercular 
resection at the University of Texas Health Science Center at 
San Antonio. The substrate of his epilepsy consisted of an 
MRI-positive focal cortical dysplasia type II b [9]. The patient 

has been seizure free at the last clinical follow-up 3 years 
postoperatively. This study has been approved by the local 
institutional ethics research board. Intracranial EEG was 
recorded with subdural grids and strips at 500Hz sampling 
frequency, and contained 5-sec preictal and 30-sec ictal 
activity identified by visual inspection of the epileptologist 
(OL). The implantation scheme is depicted in Fig. 2. An 8x8-
contact inferior frontal grid (IFG, interelectrode distance: 5 
mm) overlaid the lesion in the right perisylvian areas. An 
additional 2x5 superior frontal grid (interelectrode distance: 1 
cm) and multiple strips were placed around IFG and 
interhemispherically. A 2-contact recording reference (G) was 
placed over the anterior mesial portion of the right superior 
frontal gyrus, removed from areas of high cortical irritability. 

 

 
Fig. 2. (A) Electrode implantation scheme of the patient and (B) the 

resection that rendered the patient seizure free. 

C. From intracranial EEG to seizure onset localization 

1) Pre-processing 

The patient data were low-pass filtered (0.5Hz to 45Hz) with a 
notch at 60 Hz and afterwards down sampled to 250Hz. Both 
the simulation and patient data were z-scored before 
performing functional connectivity analysis.  

2) Time-varying functional connectivity 

The functional connectivity measures we used in this paper 
are based on the concept of Granger causality. A signal x1 is 
said to Granger-cause another signal x2, when including the 
past of signal x1 helps to better predict signal x2 beyond when 
only the past of signal x1 itself is included [10].  

Autoregressive modeling is a commonly used technique to 
investigate the causality between signals. The pre-processed 
signals were modeled using a time-varying multivariate 
autoregressive (TVAR) model with an empirically chosen 
model order p equal to 5. The intracranial EEG is represented 
as a linear combination of its own past as follows: 

 𝑿(𝑡) = ∑ 𝑨𝑚(𝑡)𝑿(𝑡 − 𝑚)
𝑝
𝑚=1 + 𝑬(𝑡) 

Where X(t) is the iEEG signal matrix, Am(t) is the model 
coefficients matrix for delay m and E(t) is the noise matrix. 
The coefficients of the TVAR model were estimated using a 
Kalman filter with update coefficient equal to 10

-3
 and Kalman 
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smoothing term equal to 100 [11]. To investigate the causality 
between the signals in the spectral domain the Fourier 
transform is applied to the coefficient matrices at each time 
point t.  

 𝑨(𝑓, 𝑡) = 𝑰𝑲 − ∑ 𝑨𝑚(𝑡)exp⁡(−𝑖2𝜋
𝑓

𝑓𝑠
𝑚)

𝑝
𝑚=1  

where IK is the K times K identity matrix, with K the 
number of channels. The transfer matrix H is the inverse of the 
Fourier transform of the coefficient matrices.   

 𝑯(𝑓, 𝑡) = 𝑨(𝑓, 𝑡)−1 

Based on different normalizations of A(f,t) and H(f,t) 
matrices, a number of multivariate directed functional 
connectivity measures are defined, such as the Adaptive 
Partial Directed Coherence (APDC) and the Adaptive Directed 
Transfer Function (ADTF): 

 𝐴𝑃𝐷𝐶𝑖𝑗(𝑓, 𝑡) =
|𝑨𝑖𝑗(𝑓,𝑡)|

2

∑ |𝑨𝑖𝑘(𝑓,𝑡)|
2𝐾

𝑘=1
 

 𝐴𝐷𝑇𝐹𝑖𝑗(𝑓, 𝑡) =
|𝑯𝑖𝑗(𝑓,𝑡)|

2

∑ |𝑯𝑖𝑘(𝑓,𝑡)|
2𝐾

𝑘=1
 

The integrated APDC and ADTF (iAPDC and iADTF) and 
the full-frequency APDC and ADTF (ffAPDC and ffADTF) 
are different normalizations of the APDC and ADTF over the 
frequency band of interest.   

 𝑖𝐴𝑃𝐷𝐶𝑖𝑗(𝑡) =
1

𝑓2−𝑓1
∑

|𝑨𝑖𝑗(𝑓,𝑡)|
2

∑ |𝑨𝑖𝑘(𝑓,𝑡)|
2𝐾

𝑘=1

𝑓2
𝑓=𝑓1

 

 𝑖𝐴𝐷𝑇𝐹𝑖𝑗(𝑡) =
1

𝑓2−𝑓1
∑

|𝑯𝑖𝑗(𝑓,𝑡)|
2

∑ |𝑯𝑖𝑘(𝑓,𝑡)|
2𝐾

𝑘=1

𝑓2
𝑓=𝑓1

 

 𝑓𝑓𝐴𝑃𝐷𝐶𝑖𝑗(𝑡) = ∑
|𝑨𝑖𝑗(𝑓,𝑡)|

2

∑ ∑ |𝑨𝑖𝑘(𝑓′,𝑡)|
2𝐾

𝑘=1
𝑓2
𝑓′=𝑓1

𝑓2
𝑓=𝑓1

 

 𝑓𝑓𝐴𝐷𝑇𝐹𝑖𝑗(𝑡) = ∑
|𝑯𝑖𝑗(𝑓,𝑡)|

2

∑ ∑ |𝑯𝑖𝑘(𝑓′,𝑡)|
2𝐾

𝑘=1
𝑓2
𝑓′=𝑓1

𝑓2
𝑓=𝑓1

 

The iAPDC, iADTF, ffAPDC and ffADTF are normalized 
with respect to incoming information flow at each time point t. 
This means that the following normalization holds:   

 ∑ 𝑖𝐴𝑃𝐷𝐶𝑖𝑗(𝑡)
𝐾
𝑗=1 = 1 

The ADTF measures are able to reveal cascade 
connections, while the APDC measures reveal only the direct 
connections. Simply put, if there is a connection from x1 to x2 
and from x2 to x3 at the same frequency f and time t, the 
APDC measures will find the connections x1 to x2 and x2 to x3, 
while the ADTF will find the connections x1 to x2 and x1 to x3. 
The ADTF shows the origin of information flow, while the 
APDC shows the direct connections. 

3) Graph measures to localize the SOZ 

Once the directed functional connectivity measures are 
calculated we use 2 methods to localize the SOZ: the out-
degree and the shortest path. The out-degree looks at the 
number of out-going connections, while the shortest path 
calculates the shortest path between the electrodes. We use the 
summed out-degree (ω) and summed shortest path (ψ) to 
identify the SOZ: 

 𝜔𝑗 = ∑ ∑ 𝑐𝑜𝑛𝑛𝑘𝑗(𝑡)
𝐾
𝑘=1

𝑡2
𝑡=𝑡1

 

 𝜑𝑗 = ∑ ∑ 𝜎𝑘𝑗(𝑡)
𝐾
𝑘=1

𝑡2
𝑡=𝑡1

 

Where connkj is the connectivity value (iADTF, ffADTF, 
iAPDC or ffAPDC) from signal xj to signal xk and σkj is the 
shortest path from node j to node k in the graph where the 
inverse of the connectivity values are used as weights of the 
edges. If there is a large connection from x1 to x2, the inverse 
is used as edge weight from x1 to x2, meaning that the cost of 
the edge will be less if the connectivity is higher. The node 
with the highest summed out-degree or the node with the 

lowest summed shortest path is identified as the SOZ.

D. Evaluation of the simulations 

The simulations are evaluated based on two measures: area 
under the curve (AUC) and percentage correctly identified 
SOZ. 

1) Area under the curve 

The true positive (TP), false positive (FP), true negative 
(TN) and false negative (FN) connections of the simulations 
were assessed by comparing the thresholded time-varying 
connectivity matrix of each of the connectivity measures with 
the ground truth. For the APDC measures the direct edges of 
the simulation were considered as ground truth, while for the 
ADTF the cascade connections were considered as ground 
truth. We consider the complete threshold range 0 to 1 in steps 
of 0.01 to calculate the TP, FP, TN and FN. The AUC is 
calculated based on the sensitivity and the precision to assess 
the performance of the different connectivity measures. 

2) Correct SOZ localization 

The percentage of correctly localized SOZ in the 
simulations is calculated based on the summed out-degree and 
the summed shortest path. The nodes with the highest summed 
out-degree and lowest summed shortest path are compared to 
the simulated SOZ. 

E. Evaluation of the patient data 

The proposed methods to localize the SOZ are applied to 
the ictal intracranial EEG of the patient. To evaluate the 
influence of the number of channels on SOZ localization we 
selected three subsets of channels: (i) all 113 channels; (ii) the 
IFG grid that contains 64 channels and (iii) a 25 rectangular 
subset of the IFG grid with corners IFG9, IFG13, IFG41 and 
IFG45. The SOZ localization is compared with the resected 
region as depicted in Fig.2 and with the visual analysis of the 
epileptologist. 
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III. RESULTS 

A. Simulations 

The results of the simulations are shown in Fig.3. Panel A 
shows the AUC values for the different connectivity measures, 
while panel B shows the percentage of correctly localized 
SOZ. The AUC of the ADTF values is higher than those of the 
APDC values. The integrated and full-frequency variants 
perform equally well. The more channels, the more the AUC 
drops. The AUC drops approximately 20% and 10% when 
comparing 32 with 128 channel ADTF and APDC analysis, 
respectively. 

As can be clearly noticed in panel B, the ADTF measures 
are preferred for SOZ localization. The effect of the number of 
channels is limited. The out-degree and shortest path measure 
perform equally to localize the SOZ using the ADTF. The 
shortest path measure is the preferred graph measure to use in 
combination with the APDC connectivity to localize the SOZ 
when compared with the out-degree. An overall increase of 
approximately 40% is achieved in this case. 

 
Fig. 3. The results of the simulations. Panel A shows the area under the 
curve for the different connectivity measures over the different number of 

channels. Panel B shows the percentage correctly identified seizure onset 

zones base on graph measures derived from the connectivity measures over 
the number of channels. 

B. Patient data 

In table 2 the SOZ localization results using the ADTF and 
APDC measures coupled to the out-degree and shortest path 
are shown. The ADTF measures show the same results 
regardless the graph measures or the number of channels, 
namely IFG27. This electrode lies in the resection and 
corresponds with the visual analysis of the epileptologist (OL). 
For the APDC we see the same results for the out-degree and 
the shortest path. However, different results are found for the 
different subsets of included channels. When all channels are 
included the SOZ localization based on APDC does not 
correspond with the resection and with the visual analysis of 

the epileptologist. In Fig. 4 the shortest path and out-degree 
value of the IFG grid are shown. For the ADTF we find 
consistent results over graph measures and number of 
channels included, while for the APDC the results are not 
consistent. 

TABLE II.  SOZ LOCALIZATION IN THE PATIENT 

 #chan iADTF ffADTF iAPDC ffAPDC 

Out-

degree 

25 IFG27 IFG27 IFG26 IFG26 

64 IFG27 IFG27 IFG37 IFG37 

113 IFG27 IFG27 SF6 SF6 

Shortest 

path 

25 IFG27 IFG27 IFG26 IFG36 

64 IFG27 IFG27 IFG37 IFG37 

113 IFG27 IFG27 SF6 SF6 

 

 
Fig. 4. The results of the out-degree and shortest path for iADTF, 

ffADTF, iAPDC and ffAPDC for the IFG electrodes. The color corresponds 
with SOZ localization. The whither the more likely to be the SOZ. The white 

numbers indicate the IFG electrodes.  

IV. DISCUSSION 

A. Simulations 

The seizure model used in the simulations is a simple 
model in which time series are delayed to mimic directed 
functional connectivity between the signals. Despite the fact 
that in real life the coupling between groups of neurons is 
more complex, these simple simulations already provide a 
good insight in how the different connectivity measures 
perform, which graph measures should be used and what the 
influence is of the number of channels used in the SOZ 
localization analysis. 
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We chose to use sensitivity and precision to calculate the 
AUC and not the commonly used sensitivity and specificity 
because the number of TN is very high in the simulations. 
This means that the specificity = TN/(TN+FP) will always be 
close to 1 when TN >> FP. In this case the precision = 
TP/(TP+FP) is a better evaluation measure to investigate the 
influence of the FP in the simulations. 

The ADTF outperforms the APDC to localize the SOZ. 
This is expected because the ADTF models cascade (indirect) 
flows, while the APDC models the direct flows. This means 
that the out-degree of the ADTF can be seen as a global 
outgoing flow including cascade flow, while for the APDC the 
out-degree only reflects the local out-going connections. An 
example of this is represented in fig.1, where there are 31 
outgoing cascade connections from node 91, while there are 
only 3 local outgoing connections. The shortest path works 
better for the APDC than the out-degree, because the shortest 
path includes indirect paths over other nodes. The APDC, 
however, is a useful measure when one wants to investigate 
the individual directed connections in the network. 

Based on the AUC, the ADTF is more sensitive than the 
APDC to the increase in the number of channels, while the 
opposite is noticed for the percentage of correctly localized 
SOZ. This means that the individual ADTF connections are 
more affected than those of the APDC when channels are 
added to the analysis. Despite this, the ADTF network remains 
more valuable than that of the APDC to localize the SOZ.   

B. Patient data 

The ADTF results were consistent over the number of 
included channels and pointed to an electrode in the resection. 
For the APDC results were more variable over the number of 
included channels and did not correspond to the resection 
when all channels were included in the analysis. This 
corresponds with the simulations where the ADTF was also 
the preferred measure to localize the SOZ.Limitations and 
future work 

Only one seizure of one patient who had a relatively large 
resection in which many electrodes were situated was 
analyzed. More patients are needed to show the true value of 
SOZ localization using functional connectivity from many 
iEEG channels. Especially patients with more focal visually 
identified SOZ and smaller resection beds need to be 
investigated. 

The benefit of localizing the SOZ more focally compared 
to visual analysis is that it could lead to a more 
tailored/smaller resection and more focal neurostimulation. 
However, prospective studies that perform resections or 
neurostimulation based on connectivity results need to be done 
to investigate the true added value of more focal localization 
compared to visual analysis. 

The designed framework can also be applied to estimate 
connectivity between sources in the brain after EEG source 
imaging (ESI). Studies have showed the potential of 
combining ESI with directed functional connectivity to 
localize the SOZ [12] and to investigate differences between 
left and right temporal lobe epilepsy [13]. With the increased 
use of high density scalp EEG in clinical practice, the analysis 

to non-invasively map functional brain networks is gaining 
interest in the neuroscience community.  However, thorough 
validation of these non-invasive methods using simultaneous 
intracranial and high density scalp EEG recordings should be 
performed. Furthermore, thorough validation in a large patient 
group is necessary before the techniques can be used in 
clinical practice and have an impact on patient management. 
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