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Iterative Least Squares Algorithm for Inverse
Problem in Microwave Medical Imaging

∗Masoumeh Azghani and Farokh Marvasti

Abstract— The inverse problem in MicroWave Imaging (MWI)
is an ill-posed one which can be solved with the aid of the sparsity
prior of the solution. In this paper, an Iterative Least Squares
Algorithm (ILSA) has been proposed as an inverse solver in
MWI which seeks for the sparse vector satisfying the problem
constraints. Minimizing a least squares cost function, we derive a
relatively simple iterative algorithm which enforces the sparsity
gradually with the aid of a reweighting operator. The simulation
results confirm the superiority of the suggested method compared
to the state-of-the-art schemes in the quality of the recovered
breast tumors in the microwave images.

Index Terms—Microwave tomography, sparse signal process-
ing, sparsity, inverse scattering, Microwave imaging technique.

I. INTRODUCTION

Microwave imaging is a powerful tool for breast tomog-
raphy which has gained a great deal of attention during the
recent years [1]. The reason for the popularity of this scheme
is that MWI is faster, less expensive, and more convenient
for the patients as they do not have to endure the long time
and steady stay in the MRI capsule [2]. The mechanism of
MWI relies on the change of dielectric parameters from the
healthy tissue to the malignant one. In order to derive the
dielectric parameter values which would represent the tumors,
the Distorted Born Iterative Method (DBIM) is used. The
inverse problem which appears in the DBIM scheme is ill-
conditioned which requires to be solved with the aid of some
prior information. The conventional schemes were mostly
based on classic optimization techniques such as Conjugate
Gradient (CG) [5], [6] and Gauss Newton (GN) [2], [7]. With
the introduction of Compressed Sensing (CS) [8]–[10], a new
approach has been emerged to address the ill-posedness of
the under-determined equations. The property of the signal
which is being used in CS paradigm to solve the under-
determined set of equations is its sparsity. Sparsity refers to
the case where most of the signal entries are zero in some
domain. The recent techniques exploits the sparsity assumption
to solve the inverse problem. In [11], the elasticnet algorithm
has been suggested. In [12]–[14], the thresholding techniques
have been presented to enforce the sparsity of the signal. In this
paper, a sparsity-based iterative weighted scheme is proposed
to solve the MWI inverse problem at each iteration of the
DBIM technique. We define a weighted L2 norm cost function
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to encourage the sparsity at the same time of stabalizing the
problem. The simulation results confirm the superiority of the
proposed ILSA method over its counterparts in the quality of
the recovered tumors.

The rest of the paper is organized as follows: In section II,
a summery of the DBIM method is described. The suggested
ILSA method is illustrated in section III. In section IV, the
simulation results are reported. Section V concludes the paper.

II. THE DBIM METHOD

In electromagnetical inverse scattering problems, the goal
is to determine the dielectric profile of the tissues from the
measured scattered fields. The Distorted Born Iterative Method
(DBIM) inverse sattering scheme consists of two alternating
stages of forward and inverse problems. The forward problem
refers to the case where the dielectric profile is assumed to
be known and the scattered fields are estimated; hence, the
forward problem is well-posed which can be solved using
the popular FDTD scheme. In inverse problem, the dielectric
profile is estimated from the estimated fields. This is in general
a non-linear problem, approximated as linear as shown in (1).

y ' Ax (1)

where y represents the measurement vector (the measured
scattered fields), the matrix A is the measurement matrix
(the coefficient matrix), the vector x is the solution vector
(contrast vector of parameters). Since the number of equations
is less than the number of variables, the inverse problem is
ill-conditioned which requires some prior information such as
sparsity of the solution. The focus of this paper is to present a
sparsity-based scheme to solve the inverse problem of MWI.
The proposed method is illustrated in the next section.

III. ITERATIVE LEAST SQUARES ALGORITHM (ILSA)
In this section, our proposed Iterative Least Squares Al-

gorithm (ILSA) is presented. In order to solve the under-
determined inverse problem, the following minimization is
used:

min ‖x‖1 + λ2‖x‖22 + λ1‖y −Ax‖22 (2)

where the first L1 norm term is to encourage the sparsity
of the solution vector, and the second L2 term is to increase
the robustness of the problem against instabilities occurring
due to the non-linear approximation. The third term is the
measurement fidelity term. We intend to replace the non-
differentiable L1 norm term with the differentiable weighted
L2 norm term as:
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min
N∑
j=1

x2
j (ωj + 2λ2) + λ1‖y −Ax‖22 (3)

where the weighting coefficients ωi’s are set as:

ωi =
1

(xi
2 + ε2)

1/2
(4)

By considering a very small value for ε, it is trivial to see
that weighted L2 norm term can be a good approximation of
the L1 norm.

The minimization task is simply conducted by taking the
derivative of the cost function as:

x = λ1
(
diag(ω) + 2λ2I+ λ1A

HA
)−1

AHy (5)

Using the reweighting and minimization steps alternatively,
we obtain the ILSA method illustrated in the following algo-
rithm. itermax is the maximum number of iterations.

Algorithm 1 Iterative Least Squares Algorithm (ILSA)

1: input:
2: A measurement matrix A ∈ RM×N .
3: A measurement vector y ∈ RM .
4: The maximum number of iterations itermax.
5: output:
6: A recovered estimate x̂ ∈ RN of the original signal.
7: procedure ILSA(y,x)
8: x1 ← 0
9: ε← 10−5

10: ω1 ← (1, 1, · · · , 1)
11: for n=1:itermax do
12: xn+1 ← λ1

(
diag(ωn+1) + 2λ2I+ λ1A

HA
)−1

AHy

13: wn+1
i =

1(
xn+1
i

2
+ ε2n

)1/2
14: end for
15: return x̂← xitermax

16: end procedure

IV. SIMULATION RESULTS

In this section, the simulation results are presented. The
dataset is adopted from the UW-Madisons repository data [17].
The FDTD forward solver has been applied in a uniform grid
cell of size 2 mm. The proposed ILSA method is compared
against two of the methods in the literature, L2-IMATCS [12],
[13] and L2-ISATCS [14]. In the simulations, the time constant
parameter τ is set to be 1.7 ps. For the background medium,
we set εr = 2.6. Moreover, the data has been obtained in 6
equally spaced frequencies ranging from 1.2-2.7 GHz.

The proposed ILSA technique has two parameters to be
adjusted, λ1 and λ2. The convergence of the algorithm depends
on the value of λ1. Increasing λ2 would boost the robustness
of the algorithm, while decreasing the quality of the recov-
ered tumors. Setting λ2 to 0.001 provides this tradeoff. The
maximum number of iterations is set to itermax = 3. Figure
1 depicts the synthetic breast tumors used as database for the
first simulation scenario.

Fig. 1: (left) εr, (right) σ

The recovered tumors using the proposed method and the
other two state-of-the-art methods for the SNR of 60 dB are
shown in Figure 2. The parameter λ1 is set to 0.08 for this
simulation.

Fig. 2: The left column represents the reconstructed dielectric
constant εr, the right column represents the reconstructed
conductivity σ distributions for the small tumors in Fig. 1
for 16 antennas and SNR=60 dB. The first row is for ILSA,
the second row is for L2-ISATCS, and the third row is for
L2-IMATCS.

According to this figure, we observe that the proposed
ILSA method offers better recovery compared to the L2-
IMATCS scheme, while its performance is slightly better than
the L2-ISATCS method. We should also study the behaviors
of the three methods for the reconstruction of heterogeneous
numerical breast phantoms. The dielectric constant and the
conductivity maps of the heterogeneous breast model which
is used as the dataset for the next simulation scenario are
depicted in Fig. 3.

For the heterogeneous breast models used in this scenario,
we have used the low-frequency reconstruction at 1 GHz as
the initial solution. The reconstructions of the three methods,
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Fig. 3: Dielectric constant εr (left) and the conductivity σ
(right) maps of the heterogeneous breast model calculated at
1 GHz.

the proposed ILSA, L2-ISATCS, and L2-IMATCS, for the low
SNR value of 30 dB are depicted in Figure 4. In this scenario,
the parameter λ1 has been increased to 0.6 to provide the
convergence of the algorithm.

Fig. 4: The left column represents the reconstructed dielectric
constant εr, the right column represents the reconstructed
conductivity σ distributions for the heterogeneous tumors in
Fig. 3 for 16 antennas and SNR=30 dB. The first row is for
ILSA, the second row is for L2-ISATCS, and the third row is
for L2-IMATCS.

The results indicate that the proposed scheme offers subjec-
tively better recovery of the heterogeneous tumors compared
to both of the other techniques. In order to have an objective
measure to evaluate the efficiency of the methods, we use the
Normalized Mean Square Error (NMSE) defined as:

NMSE =
‖xrec − x‖2

‖x‖2
(6)

where xrec indicates for the estimated parameters and x
represents for the original parameters (σ or εr).

The NMSE of the three schemes in various scenarios are
given in Table I.

TABLE I: Normalized Mean Square Error (NMSE) at 1GHz

scenario parameter L2-IMATCS L2-ISATCS ILSA

Fig. 1 NMSE(εr) 0.0742 0.0562 0.0643
(SNR=30 dB) NMSE(σ) 0.0892 0.0974 0.1403

Fig. 1 NMSE(εr) 0.0758 0.0553 0.0568
(SNR=60 dB) NMSE(σ) 0.1004 0.0635 0.0627

Fig. 3 NMSE(εr) 0.4193 0.4878 0.4811
(SNR=30 dB) NMSE(σ) 0.3665 0.8370 0.7675

Fig. 3 NMSE(εr) 0.2650 0.4816 0.4645
(SNR=60 dB) NMSE(σ) 1.3709 0.8048 0.6980

According to this table, the NMSE of the ILSA scheme
is much lower than the other two methods in most of the
cases. This difference is more evident in the case of the
heterogeneous breast model. The overall conclusion on the
recovery performances of the methods is that ILSA scheme is
more efficient than the L2-ISATCS which is also superior to
the L2-IMATCS. Using the reweighting strategy, the proposed
ILSA scheme converges to the ultimate solution much faster
than the other methods. The number of required iterations
is 3 for the ILSA scheme while this number is around 12
for the L2-ISATCS and 24 for the L2-IMATCS. Of course,
it should be noted that the complexity of each iteration in
the proposed method is more than that of the L2-ISATCS
and L2-IMATCS. As a concrete example, the simulation time
per iteration for the ILSA method is approximately 1 second,
while it is around 0.1 seconds for the L2-ISATCS and 2.5
seconds for the L2-IMATCS. Hence, comparing from the total
computational comlpexity, the ILSA scheme behaves better
than the L2-IMATCS and worse than L2-ISATCS.

V. CONCLUSION

In this paper, an iterative least squares technique is sug-
gested for the inverse problem of MWI. The premise of the
method is to encourage the sparsity of the solution with the
application of the reweighting strategy. The suggested method
offers promisable performance compared to its counterparts in
the recovery accuracy. Despite the fact that the method requires
very few number of iterations, say 3, for convergence, its
computational complexity is more than L2-ISATCS. However,
compared to the l2-IAMTCS scheme, the proposed method is
faster.
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