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Abstract—In this paper, we propose a novel realization of
sub-band adaptive Volterra filter, which consists of input signal
transformation block and only one adaptive Volterra filter. The
proposed realization can focus on major frequency band, in
which a target nonlinear system has dominant components, by
changing the number of taps in each sub-band in order to
simultaneously realize high computational efficiency and high
identification performance. The proposed realization of sub-
band adaptive Volterra filter is applied to the identification
of electro-dynamic loudspeaker systems and the effectiveness
is demonstrated through some simulations. Simulation results
show that the proposed realization can significantly improve the
estimation accuracy.

I. INTRODUCTION

Loudspeaker systems have linear and nonlinear distortions
that may impair the sound quality. To remove the distortions
by using digital signal processing, the digital filter must treat
not only linearity but also nonlinearity for the target system.
The nonlinear signal processing unit is generally realized by
Volterra filter (VF) [1]. VFs are based on Volterra series
expansion [2], which is a good model for the nonlinearity
of loudspeaker systems [3]. One of the modeling methods
is to use adaptive Volterra filter (AVF) [4]. Using Volterra
series expansion, we have already proposed a nonlinear inverse
system to remove the distortions [5]. If AVFs can accurately
identify the nonlinearity of loudspeaker systems, the nonlinear
inverse system, which is connected in front of loudspeaker
systems, can reduce the nonlinear distortions, so that the
radiated sound can have high quality.

However, the computational complexity of VFs is much
greater than that of linear filters. To reduce the computational
complexity, adaptive simplified Volterra filters (ASVF) have
been proposed in [6]-[8]. In [6], small coefficients are replaced
to delay unit based on the characteristics of the first-order
VE. In [7] and [8], the second-order VF is approximated by
setting some coefficients far from the main diagonal to zero
because the coefficients with the most significant amplitude lay
on the diagonals near the main one. However, the ASVFs can
reduce a little computational complexity and may not be able
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to ensure sufficient estimation accuracy because the removed
coefficients may be included in a large value.

In [9], [10], the parallel-cascade Volterra filter (APCVF)
has been proposed. The APCVF is based on the use of
singular value decomposition. The APCVF can reduce the
computational complexity while maintaining the identification
accuracy because many branches with small eigenvalues can
be removed. However, the appropriate number of branches
is unknown before the identification, that is, many trials are
required to obtain the appropriate number of branches and the
APCVF is no suitable for realtime applications.

On the other hand, sub-band Volterra filters have been
proposed in [11]-[14]. In [11], linear filters included in the
parallel cascade realization are divided into sub-bands. In
[12]-[14], first- and second-order Volterra filters are regarded
as one large linear filter and sub-band processing is applied
to this linear filter. We call this sub-band approach “indirect
sub-band AVF (ISAVF)”.

Separately from the above realizations, we have already
proposed the nonlinear inverse system using the multirate
signal processing to reduce the computational complexity [15].
The multirate signal processing technique proposed in [15]
has been generalized to higher order VFs in [16]. AVFs have
also been expanded by using the multirate signal processing
in case of the system identification [17]. In [17], adaptive
sparse-interpolated Volterra filters (ASIVF) can have many
zero coefficients by the band limitation of input signal and can
consequently reduce the computational complexity. However,
the performance depends on the characteristics of Volterra
kernels of a target nonlinear system. ASIVF requires band-
limited input signal (less than F,/4 where Fy is sampling
frequency) to reduce the computational complexity. In this
case, ASIVF cannot estimate the components outside the band
[0, F/4] of the target nonlinear system.

To solve this problem, we have also proposed a sub-band
adaptive Volterra filter to identify nonlinear systems [18]. We
call this sub-band realization “direct sub-band AVF (DSAVF)”
in this paper. DSAVF proposed in [18] is one of extensions
of AVFs with sparse coefficients proposed in [15], [17] and
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consists of VFs with sparse coefficients and different band
limitations in each sub-band, respectively. DSAVF can treat all
frequency bands by parallel processing while maintaining high
identification performance. If the distortion is concentrated in
the low frequency like loudspeaker systems, DSAVF can de-
ploy more taps against low frequency band. However, DSAVF
has a disadvantage that the system configuration becomes
so complicated as the number of sub-bands (D) increases
because the number of combinations of input signal increases
exponentially. In this paper, we propose a realization for
DSAVE, which consists of input signal transformation (IST)
block and only one AVF to integrate many sub-bands. We
call this realization Integrated DSAVF (IDSAVF). IDSAVF
can focus on dominant frequency band by changing the tap
lengths in each sub-band.

II. SUB-BAND VOLTERRA FILTERS

A. Discrete Volterra Series

Loudspeaker systems can be modeled by using the Volterra
series expansion [2]. For simplicity, we assume that Volterra
kernels have a finite memory of N and do not treat the third
or more terms. The input-output relation is represented by

y(n) = yi(n) +ya(n),
N-1
yi(n) = Y m(k)a(n - k),
k1=0
N-1N-1
yg(n) = Z hg(lﬁ,kg)l‘(n—kl)x(n—kg), (1)
k1=0 ka=0

where x(n) and y(n) are the sampled input and output
signals, respectively; y1 (n) and y2(n) are the output signals for
first- and second-order discrete Volterra kernels, respectively;
hi(k1) and ho(kq, ko) are the first- and second-order discrete
Volterra kernels, respectively.

B. Volterra Sampling Theorem

From Eq. (1), even if the sampling frequency is equal to the
Nyquist frequency, the output signals of second-order Volterra
kernel contain the components more than fs/2, where f is
sampling frequency, so that aliasing occurs. In order to avoid
the aliasing, the input signal or the second-order Volterra
kernel must be band-limited to fs/4. This band-limitation
is known as the Volterra sampling theorem. However, the
Volterra sampling theorem is not required to the system
identification using AVFs [19].

C. Elimination of Redundancy in Band-limited Volterra Filters

In [16], the multi-rate signal processing has been applied to
VFs. If the frequency band of the second-order VF is limited
to fs/2D or less, where D is the number of sub-bands, the
references [15], [17] have introduced reduction methods of
the computational complexity to 1/D?. These methods are
based on the multi-rate signal processing. In [15], [17], the
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coefficients of the second-order VF hy(ky, k) in time domain
are given by

hay(ky, k2) :{

If the imaging components in the output signal of the VF
hy(ky, ko) is removed and the gain is adjusted, the output
signals of VFs ho(ky, ko) and hy(ky, ko) are equivalent.
Concretely, if the frequency band of the second-order VF is
limited to fs/2D or less and the output signal of the second-
order VF huy(ky,ks) is multiplied by D2, then the output
signals of VF ho(ki, ko) and hy(ky, ko) are equivalent. Here,
hy(ky, ko) is more efficient than ho(ky, ko) in aspect of the
computational complexity because there is only one non-zero
coefficient every D? coefficents and the other multiplications
can be ignored in the output calculation.

h?(kla k?)
0

ki,ko =0,D,2D---
Otherwise.
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D. Derivation of Sub-band Volterra Filter

We define the N-dimensional vectors x;(n) and x2(n) and
the N x N matrix H as

xi(n) = xa(n) = [z(n),z(n—1), - z(n— (N -1,
h2(0,0) ha(0,N — 1)
H - s z
ho(N —1,0) ho(N —1,N —1)
3)
Hence, y»(n) in Eq. (1) is written in the form
ya(n) = xi(n)Hxs(n). 4)

If we define a N x N decimation matrix A p, the transformed
vectors x;(n) and x,(n) and the transformed matrix H are
expressed as

x;(n) = Xy(n)=Ayxxi(n) = Axxa(n),
= [a:o(n),xl(n),~-~,a:N_1(n)]T,
H = ALHAy,
h12,0,0(0,0) h2,0,1(0,0) h2,0,8-1(0,0)

h2,1,0(0,0) h2,1,1(0,0) h2,1,8-1(0,0)

ho,N-1,000,0) han-11(0,0) --- hoN_1,5v-1(0,0)

®)
Hence, the transformed output signal y,(n) is written in the
form
%1 (n) "H x,(n)
(Ale(n))TA%HAN(ANXQ(n))
xi () ANAVH(ANAN)xa(n)
xi (n)(ANAn)"TH(AyAN)x2(n).

Ya(n)

(6)

If the decimation matrix A is symmetric and orthogonal
in Eq. (6), AyAy becomes the unit matrix, so that y(n)
is equal to y2(n). In other words, if we transform the input
signal and second-order VF by the symmetric and orthogonal
matrix Ay, y5(n) is equal to y2(n).
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Let us discuss transforming x;(n), x2(n) and H by the
DxD symmetric and orthogonal decimation matrix Ap.
x1(n), x2(n) and H are separated by partial vectors and
matrix which have D and Dx D samples respectively. If we
define the D-dimensional partial vectors x4 p(n) and the
DxD partial matrixes Hg, 4,.p by

Xq,p(n) = [¢(n - dD),2(n — 1 —dD), - ,a(n — (D — 1) — dD)]",
ha(dy D, dyD) ha(dyD, D — 1 4 dyD)
Hgy, 4,0 = : : ,

ho(D = 1+dyD,dyD) -+ ho(D—1+4diD,D—1+dyD)

)

where d, di and dy are integers from 0 to N/D — 1, respec-
tively. Eq. (3) is written in the form

x2(n) = [Xg,D(n)v T »X%/DA,D(“)]T?

Hoop

x1(n)

Ho n/p-1,p
H .

Hy/p-10,D Hy/p-1,n/D-1,D

(®)
where x1(n), x2(n) and H are split by D samples by using
xq,p(n) and Hy, 4, p, respectively. If Eq. (8) is substituted
for Eq. (4), y2(n) is represented by

N/D—1N/D—1

> > x4 p(m)Ha, 4, DXy p(n). (9)

d,=0 do=0

y2(n)

Let us extend the discussion of the symmetric and orthogo-
nal matrix Ay to Ap. If we define the D-dimensional trans-
formed vectors x,; (n) and the DxD transformed matrix

’

d1,ds,D>
X, p(n) = Apxap(n)
= [xo(n—dD),z1(n —dD), -+, xp_1(n — dD)]T,
T
H, & p = ApHaidpAp

h2,0,0(d1D,d2D) ha,0,.0-1(d1 D, d>D)

|

ya2(n) is represented by

).

(10)

ha.p-1,0(d1D,dyD) -+ hap_1,p-1(d1D,d2D)

N/D—-1N/D-1

’ ’ ’
Z Z Xdl;,D(n)Hdl,dg,Dng,D(n)'

d,=0 do=0
(11)

Let us define the Dx N/D input signals matrix X, (n) as

y2(n)

Xp(n) = [xopn),x; p(n), ., Xy/p_1.pn)],
(12)

where X'5(n) consists of a universal set of the N/D D-
dimensional vectors x; ,(n). Hence X ,(n) is also equal
to the transposed matrix of a universal set of the D N/D-
dimensional vectors as
Xp(n) = [Xo,D

" "

(n)v Xl,D(n)a e 7XD—1,D(n)]T7
(13)

13

where N/D-dimensional vector x; p(n) and the N/DxN/D
matrix H;’S% p are given by each element in X:L p(n) and

’
Hy, 4,0 3
" T
Xs,D(n) = [zs(n),zs(n—D), -+, zs(n— (N/D—1)D)]",
12 ha s, 5, (0,0) ha, .5, (0,(N/D —1)D)
H ., = ( 5 | )
hasy,5,((N/D —=1)D,0) - has, s,(N/D—1)D,(N/D —1)D)

(14)

where s, s; and sq are integers from 0 to D — 1, respectively.
X, p(n) shows input vector of the S-th sub-band in the case
of the division D. Equation (11) is written in the form

1

D—1D-1
va(n) = > D x
$1=0s2=0

12

2 "
T (n)Hsl,Sg,DXSQ,D (TL).

S$1,D

15)

Note that each sample interval in Eq. (14) is D, so that this
interval is decimated to 1/D. In general, the gain of each row
of Apis 1, so that ApAp is 1/D times unit matrix. In this
case, the output signal of the second-order VF is represented
by

D-1D-1N/D-1N/D-1
y2(n) = D? Z Z Z Z ha s, ,ss (K1, K2)
s1=052=0 k;=0 k=0
Ts, (N — k1)xs, (0 — ka), (16)
where s; and so represent the index of sub-band, respectively.
The large s; and sy are high frequency sub-band. Here, the
input signals x4, (n) and z,,(n) and the second-order VF
ha,s, s, (K1, k2) are obtained according to the following proce-
dure. First of all, 2(n) and ha(k1, ko) are split into D regions
and D? regions as shown in Eq. (8), respectively. Next, z:(n)
and hs(k1, ko) are transformed by A p, respectively. Then, all
input signals and filter coefficients are sorted in the order of
time for each frequency band. Finally, the sorted input signals
and coefficients are decimated to 1/D and 1/D?, respectively.
From Eq. (16), the number of DSAVFs corresponds to the
combinations of the two input signals. For example, when the
input signals are divided into D sub-bands, the number of
DSAVFs is equal to D?. In addition, when the tap length of
the second-order VF is N, the tap length of hl27d1)d27D(k1, k2)
is equal to N/D?. If only VF hy g (k1 ko) is used, the
output signal agrees with those of the methods proposed in
[15], [17].

III. NEwW REALIZATION OF DSAVF

A. New Realization Using IST and AVF

We propose a novel realization for DSAVF by using IST
and AVF. The proposed realization can simplify the system
configuration of DSAVF that generally consists of many filters.
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z(n) z(n-1) z(n—2) z(n—-3) z(n—4) z(n—5) z(n—=6) z(n—"7) X(n)

"

n—17) X2 (n)

1”(11) z”(n —1)a(n—-2) z(n-3) z(n—4) z'(n—

) 2 (n—6) z (

5

Fig. 1. Relation of x(n), x;’D(n) and x; (n).

Unknown Nonlinear System

z’(n)

Transformation of
Input Signals

Update
Algorithm

Fig. 2. New realization for DSAVF in the system identification.

If we define the N-dimensional vector xz)(n) and the NxN
matrix Hllé, by

1"

1" 1" 1"
xp(n) = [XO,TD(”)a Xl%(“)? Tt ’XDFELD(n)]Tv
17 1"
Hy,p Hy,p_1p
H,,/j _ . .
1" 1"
HDfl,O,D Hp 1 p_1p

a7

xp(n) is N-dimensional vector, which consists of xg, p(n),
x) p(n), -, Xl/é)A,D(”)' For example, if D is equal to 2,
x;(n) is the vector which consists of xgg(n) and xll/yz(n).
Since both x,(n) and x(n) are N-dimensional vectors, the
relationship of Hy, and H is similar to that of x(n) and
x(n). Eq. (15) is written as

y2(n) = x5 (n)Hpxp(n). (18)
Hence, Eq. (16) is written in the form
N—-1 N-1
ya(n) = D2 D" hy(kyka)z’ (n—ki)z (n— k),
k1=0 ko=0
(19)

where hy (ki,ks), @ (n — ki) and 2" (n — ko) are arranged
according to the orders of ho g,q4,(k1,k2), x4, (n — k1) and
Z4,(n — ko) as shown in Eq. (17), respectively. Equation (19)
shows that a single second-order VF can calculate the total
output signal of all sub-bands. For example, in the case of
D = 2, the relationships among x(n), X;D(n), and xp,(n)
are shown in Fig. 1. The transformation of input signals as
shown in Fig. 1 and D? times gain adjustment can realize the
system configuration for DSAVF shown in Fig. 2.
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(b) Input signal vector.

B. Advantage of truncated IDSAVF

In this section, we explain the advantage of IDSAVF for
computational complexity. Figure 3 shows the tap arrangement
of input signal in the IST and the relation between tap length
N and each sub-band in the AVF in case of D = 2. In
Fig. 3, ps is the truncated length. IDSAVF has the charac-
teristic as follows: the bottom-left area is the component of
low frequency, the top-right area is the component of high
frequency, the bottom-right and top-left are the components of
bilinear. If any number of divisions D is selected except for 1,
truncated IDSAVF can delete coefficients in the order from the
high-frequency. Therefore, the truncated IDSAVF can process
wideband singals and focus on lower sub-bands. In other
words, the computational complexity can be reduced while
maintaining the estimation accuracy. The truncated IDSAVF is
especially efficient for loudspeaker nonlinearity identification
because the nonlinear distortions of loudspeakers are usually
concentrated in the low frequency band.

C. Computational Complexity in Proposed Method

In this section, let us compare the computational complex-
ity of IDSAVF (proposed) with those of the conventional
reduction methods. TABLE I shows the comparison of the
computational complexity, where pg, p1, p2, P3, p4 and ps are
the truncated tap length, the length of delay unit, the number
of deleted FIR filters, the number of deleted branches and the
decimation rate, respectively.

TABLE I
CALCULATION OF AVFE.
Multiplications per output and update Example
AVF 2(N —po)? +2N —2py +4 29044(N = 128,po = 8)
ASVF (delay) 2(N —p1)? +2N —2p; +4 29044(N = 128,p; =38)
ASVF (diagonal) 2N? + 2N +4 —2py(p2 + 1) [ 29068(N = 128, py = 44)
APCVF 2N? +2(2 — p3)N —4dp3 + 2+ 3(N — p3) | 29195(N = 128,p3 = 17)
ASIVF 2(N/pa)®* +2N/ps + 4 8346(N = 128,ps = 2)
IDSAVF (Proposed) 2(N —p5)® +2(N —ps) +3 29045(N = 128,p5 = 8)

IV. SIMULATION RESULTS
A. Simulation of Loudspeaker Nonlinearity Identification

In order to compare the conventional and proposed meth-
ods, we identify the second-order nonlinear distortion of a
loudspeaker system. In the simulation, the parameters pg, p1,
P2, D3, D4, D5, and N were set so that the computational
complexity of all methods except for ASIVF becomes almost
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TABLE II

SIMULATION CONDITIONS.
Transform method Hadamard
Input voltage 1.0V
System length of an unknown nonlinear system (V) 128
Conventional parameters (po, p1, P2, P3, P4) 8,8,44,17,2
Proposal parameter (ps) 8
Number of sub-bands (D) 2
Update algorithm of AVF NLMS
Step size parameter of AVF 1.0
Sampling frequency 8kHz

Anplitude

0 .
20
0 &
Number of Tap

80

4060
100 ] 20 Number of Tap
120 140 0

Fig. 4. A second-order unknown system.

b A A s A A v
4 . T ASIVF
B ‘n __—APCYF

.— ASVF (delay)

i\
LR R e A
r T AVF ASVF (diagonal)

NMSE (Normalized Mean Square Error) [dB]

lSA (Proposed)
50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Iteration

0

Fig. 5. Comparison of convergence properties between the IDSAVF and the
conventional AVFs.

same. The input signal of ASIVF is band-limited less than
F,/4, so that the computational complexity of ASIVF is
almost 28 % of other methods. Table II and Fig. 4 show the
simulation conditions and an unknown second-order Volterra
kernel in a nonlinear loudspeaker system, respectively. In order
to evaluate the identification accuracy, we define NMSE as

> e?(n)
> d*(n)’
Figure 5 shows that NMSE of IDSAVF is the lowest in the
steady state. This is because the IDSAVF can preserve the most
important nonlinear components (in this case, lower frequency
components) while reducing the computational complexity.
The ASIVF is the highest because of low computational
complexity.

NMSE = 10log,,, (20)

V. CONCLUSION

In this paper, we proposed a novel realization method for
DSAVFs. The proposed realization consists of the IST block
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and only one AVF. Simulation results show that the proposed
realization can significantly improve the estimation accuracy
while reducing the computational complexity. In the future,
we will develop an automatic parameter setting method for
IDSAVE.
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