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Abstract—Massive multiple-input multiple-output (MIMO) is
a key technology driving the 5G evolution. It relies on the use a
large number of antennas at the base-station to improve network
performance. The performance of massive MIMO systems is
often limited by imperfect channel estimation because of pilot
contamination. Recently, several channel estimation techniques
have been proposed to minimize the performance degradation.
However, the assessment of these techniques in the literature
has often been conducted considering standard channel models,
like the independent Rayleigh fading model and Clarke’s multi-
path model, which do not consider spatial correlation. In this
work, we investigate different channel models used and proposed
for massive MIMO transmission and, through numerical studies,
highlight their effect on the performance of the aforementioned
channel estimation techniques. Based on this we recommend the
use of channel models that capture the spatial correlation between
antennas and different user channels.

I. INTRODUCTION

ITH the advancements in antenna technology and

enhanced computational capabilities of network com-
ponents, the deployment of massive multiple-input multiple-
output (MIMO) systems has become feasible [1], [2]. These
massive MIMO systems, incorporating a large number of
antennas at the base-station (BS), have the ability to improve
the network capacity by adopting efficient mechanisms for
data transmission. Massive MIMO is being considered as a
primary candidate for facilitating the Internet-of-Things (IoT),
which is the driving force behind the fifth generation (5G)
communication technologies.

A key component in the evaluation of a massive MIMO
system is the underlying channel model. Most of the research
in this field uses standard channel models such as the spatially
and temporally independent and identically distributed (i.i.d.)
Rayleigh model or Clarke’s multi-path model, which only con-
siders temporal correlation. Consequently, these models do not
incorporate spatial correlation, which arises due to the limited
number of scatterers in the propagation environment and the
compact packing of the antenna elements. Practical channel
measurements obtained from a massive MIMO measurement
campaign show that spatial correlation is significant and is
an important factor governing the system performance [3].
Besides the standard models, the correlated Rayleigh channel
model, accounting for both spatial and temporal correlation
is proposed in [4], and the COST 2100 model, derived from
measurements for conventional MIMO systems, is introduced
in [5], [6]. Recently, the COST 2100 model is shown to be
close to the practical channel measurements obtained by the
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massive MIMO measurement campaign in [3]. However, its
high computational complexity results in increased simulation
time for the evaluation of massive MIMO related techniques
using this model.

Another important problem to be addressed in massive
MIMO systems is pilot contamination, which degrades the
channel estimation performance at each BS. This occurs be-
cause each cell in the network uses the same set of orthogonal
pilot sequences and the number of such sequences is limited.
Moreover, the pilot transmission duration cannot exceed the
coherence time of the channel being estimated. Therefore,
users in neighbouring cells might reuse the same pilot se-
quences, which causes interference. Hence, channel estimation
techniques that can eliminate or minimize pilot contamination
are desirable. Though various such channel estimation algo-
rithms have been proposed in the massive MIMO literature,
their performance evaluation has been limited to the case
of standard channel models and determining their suitability
for practical scenarios remains an important problem to be
addressed.

In this work, we focus on the performance of three existing
channel estimation techniques proposed for massive MIMO
systems - pilot sequence hopping with Kalman filtering [7],
amplitude/angular based projection [8], [9] and polynomial
expansion [10]. We evaluate the performance of the aforemen-
tioned techniques for Clarke’s model, the correlated Rayleigh
and the COST 2100 models. We demonstrate that the blind
pilot decontamination technique based on amplitude/angular
projection is quite sensitive to the underlying channel model,
the Kalman filtering technique shows similar performance for
all the three models and the polynomial expansion method
gives the best performance.

II. SYSTEM MODEL

We consider a cellular wireless communication system
consisting of B cells, with one BS per cell. Each BS is
equipped with M antennas and serves K autonomous single-
antenna user equipment (UE) simultaneously. We assume that
the whole system, i.e., all cells and all UEs in each cell,
are fully synchronized. Using this model, we describe the
channel between the UEs in cell j and the BS in cell b
as Hy,; € CM*X_ The k-th column of Hy;, denoted as
hyj, € CM*1 refers to the channel between UE k in cell
j and the BS in cell b. The m-th entry of hy;,, denoted as
hy,, 5. € C, describes the channel coefficient between UE £
in cell 5 and the m-th antenna of the BS in cell b.
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Owing to the mobility of the UEs and a changing prop-
agation environment, the channel coefficients will vary with
time and they have to be estimated frequently. We assume
a frequency-flat block fading channel, where the channel is
constant during one block consisting of a coherence interval
of C' symbols, called the frame. We divide each frame into
three parts - the training phase, the uplink data phase and the
downlink data phase.

Our goal is to evaluate the performance of different channel
estimation techniques in the uplink. The uplink signal received
at the BS in cell b can be described as

B
Y =) H,X;+N, (1)

Jj=1

where X; € CK*L describes the L symbols transmitted
by the UEs in cell j and N € CM*L denotes the additive
noise whose elements are drawn from a circularly-symmetric
complex Normal distribution with zero mean and element-wise

variance o2.

III. CHANNEL MODELS FOR MASSIVE MIMO SYSTEMS

In this section, we provide a brief overview of the different
channel models employed for the evaluation of massive MIMO
systems. We determine the best suited model for evaluation
based on its computational complexity and its proximity to-
wards the channels obtained from the measurement campaign
in [3].

A. Overview of Channel Models

1) Clarke’s Model: A widely used model for the analysis
of massive MIMO systems is Clarke’s model, which is based
on the assumption that the propagation environment contains a
certain number of scatterers [7]. This model incorporates only
the temporal correlation aspect. Since spatial correlation is not
included in this model, as the number of scatterers increases,
the distribution of the channel coefficients across the antennas
will be similar to that of the Rayleigh i.i.d. model.

2) Correlated Rayleigh Model: This model generates the
channel coefficients by incorporating the spatial and temporal
correlation parameters to the Rayleigh model, while keeping
the model’s complexity low. One such correlated Rayleigh
model is described in [4], which captures the spatial cor-
relation across the BS antennas. In practical scenarios, the
number of scatterers in the propagation environment is limited
and the signals from different UEs traverse through the same
scatterers, resulting in significant spatial correlation across the
UEs. Therefore, we extend the model in [4] to capture this
aspect.

Similar to [4], our model assumes that the channel at frame
t, hy;, ¢, follows a Gauss-Markov distribution according to

1/2 1/2
hyjo = RB/S gbjkORU/EH

(2
1/2 1/2
hy;,+ = nhbjk(t—l) ++1- 772RB/S gbjktRU/Ev t>1,

where Rps = ]E(hbjkthgkt) is the spatial correlation matrix
across the antennas, following an exponential model given by

1 o V12 o /=1y
a V7 1
Rgps = ) . ;3
o YOTTE 1

where 0 < a < 1 is a real number. The vector g;; , is an
innovation process with i.i.d. entries distributed according to
CN (0, I,,) Vt, nis a temporal correlation coefficient with 0 <
n < 1 (similar to [4]) and Ryg is the UE spatial correlation
matrix given by

1 p(1?) p(E-1)?)
b(1*) 1
Ryg = ) . )]

p((K—1)2) 1

where 0 < b < 1 is a real number. Both Rgg and Ryg have
the structure of a Toeplitz matrix.

The standard Rayleigh model with i.i.d. spatial and temporal
correlation is a special case of this model with » = 0 and
Rps = Iy and Ryg = Ik, where I, is the g x ¢ identity
matrix.

3) COST 2100 Model: The COST 2100 channel model is a
geometry-based stochastic model [3], [11], using cluster-level
modelling [6]. The clusters represent the scatterers (e.g. a high-
rise building) in the real propagation environment and consist
of a package of multiple multi-path components with similar
properties. The key idea is that, depending on the location of
the UEs, only certain clusters contribute to the propagation
of the respective UEs. This approach inherently enables the
simulation of multi-user systems and the channel coefficients
between the UE and the BS are obtained by superposing all
multi-path components of the clusters which are visible at
the UE’s location. A detailed description of the model can
be found in [5] and [6]. The entire process of generating the
channel coefficients is computationally intensive since each
multi-path link and its associated parameters (pathloss, shadow
fading, etc.) has to be separately calculated and the number of
such links can be very large.

B. Comparison of Channel Models

In the following, we compare the aforementioned channel
models with respect to the joint spatial correlation in the
system, which is an important parameter to analyze the prop-
agation conditions in massive MIMO systems [2], [12]. The
joint spatial correlation, denoted by «, is quantified using the
condition number or the singular value spread (SVD spread),
which is the ratio of the maximum singular value to the
minimum singular value of the M x K channel matrix. If
K = 1, the channels of the UEs are orthogonal, consequently
they are perfectly separable. On the other hand, if the SVD
spread is large, at least two of the UEs are not well separable.

The measurement campaign [3] shows that the channels
obtained by a slightly modified COST 2100 model reflect
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Fig. 1. CDF of the SVD spread of the channels for K = 9 active UEs for
different channel models

real propagation environments rather well. However, in this
work, we use the original COST 2100 model designed for a
semi-urban micro cell with cell-radius 500m and non-line-of-
sight (NLOS) conditions in our simulations, since not all the
modifications have been published yet. The bandwidth of the
channel is set to 20 MHz and the UEs are placed in an outdoor
environment.

For the correlated Rayleigh model, we set n = 0.95,a = 0.3
and b = 0.6 so that the SVD spread of the channels ap-
proximate the practical observations in [3]. The parameters
a and b were derived through a grid search such that the
Kullback-Leibler divergence between the SVD spread from
the measurement campaign in [3] and that generated using
our correlated Rayleigh model is minimized. To search for a,
we used the range 0 < a < 0.4, so that antenna correlation at
the BS is relatively low (which in practice can be achieved by
suitably choosing the antenna elements and their spacing) and
to determine b, we explored the full range of UE correlation
values, i.e., 0 < b < 1.

Fig. 1 shows the cumulative distribution function (CDF) of
the SVD spread of the channels for a system consisting of
K = 9 UEs per cell. First, we can observe that the channel
hardening effect (the CDF becomes steeper with an increasing
number of antennas) occurs in all the models. However, the
mean value of x is much smaller for the Rayleigh i.i.d. and
Clarke’s models, which means that these models provide a
smaller correlation among the channels of the UEs than that
found in reality. In contrast to this, the correlated Rayleigh and
the COST 2100 models approximate the SVD spread obtained
in the measurement campaign [3] much better. The COST
2100 model is computationally intensive, while the correlated
Rayleigh model requires only two parameters to be tuned -
a and b, the spatial correlation parameters to approximate
the SVD spread. This makes it a convenient analytical model
reflecting real propagation environments more accurately.

IV. CHANNEL ESTIMATION TECHNIQUES

In this section, we briefly introduce selected channel esti-
mation techniques for massive MIMO systems. We will in-
vestigate two approaches derived from the perspective of pilot
contamination and a reduced-complexity approximation of the
minimum mean-square error (MMSE) estimator. The MMSE
estimator and its approximation assume that the covariance

matrix of the channels is available at the BS and use it for
channel estimation. Considering that we have M antennas at
the BS and K UEs, the covariance matrix of the channels of
the UEs of the j-th cell to the BS in the b -th cell is given by

~ ~H
Ryj = E{hy;h,;} € CMEXME (3)

where hy,; is the vectorized form of H ;.

A. Pilot Sequence Hopping and Kalman Filtering

First we consider a channel estimation technique which
reduces the effect of pilot contamination, but does not require
the covariance matrices of the channels at the BS. In this
mechanism, the pilot patterns are randomly assigned to the
UEs in each frame and a Kalman filter is then used to
track the time-varying channel [7]. The method is designed
with the assumption that the channels of different UEs are
uncorrelated in the massive MIMO regime and the random
pilot assignment de-correlates the contaminating signal across
succeeding frames.

To illustrate this mechanism, we follow [7] and consider
the estimation of only one scalar channel coefficient. Let us
assume that BS b estimates the channel coefficient between
UE k of cell b and its m-th antenna, i.e., the m-th entry
of hpp, denoted as hp, p, . First, the BS correlates the signal
received at antenna m, ygmt with the pilot sequence p,, ; of
UE k. This removes the undesired signal of all UEs applying
a pilot sequence different to p,, , due to the orthogonality
of the sequences. We can thus describe the received signal
concerning the k-th UE, at a given time ¢, as

Yo = ho Py + > MbjiPy + Tk, (6)
jJECbk

where Cp, denotes the set of all pairs j,/, identifying all UEs
applying the same pilot sequence in the ¢-th time slot as UE
k in cell b and the vector m,, ; denotes the thermal noise
received at BS b during the training phase in time slot ¢.

In the pilot sequence hopping part of this technique, the
contaminating signal (the sum in (6)) across consecutive
frames is de-correlated by randomly assigning pilot sequences
to each UE in each frame. This ensures that the same pilot
sequence is combined with different (in best case uncorrelated)
channel impulse responses during different frames. The second
part of the proposed approach tracks the time-varying channel
via a modified Kalman filter. The details of the Kalman filter
are provided in [7].

B. Amplitude and Angular Projection

The second method considered in this work is based on the
blind pilot decontamination technique described in [8]. In this
method, the BS first performs an eigen decomposition of the
data received in cell b, Yg, during the uplink data transmission
phase:

YV =U,A U, (7)

where U, € CM*M s a unitary matrix and A, is a
diagonal matrix whose entries are sorted in non-increasing
order. The first K columns of Uy, combined in the matrix
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Ey, = (up,,up,,...,up,) € CM*E form an orthogonal
basis of the estimated channel subspace H . Then, the signal
received during the pilot transmission phase, Yg, is projected
onto the subspace spanned by E,. The channel estimate of
the channels describing the propagation of the UEs from the
b-th cell to the BS in the b-th cell is then given by

o, = E,ElY!PH. (8)
where P, € CK*7 is the pilot transmission matrix with each
row containing the pilot sequences of length 7.

An extension of the blind decontamination method is pre-
sented in [9]. This approach improves the estimate obtained
via (8) by filtering it in the frequency domain. If the channel
has a finite angular support, the frequency spectra of the
channel power is clustered within a certain frequency range.
Consequently, if the channels of the UEs have disjoint angular
supports, the powers of the channel of interest and the inter-
fering channels are concentrated in different frequency ranges.
This fact is exploited to design a Fourier matrix filtering out
all undesired frequency components which do not belong to
the UE of interest. This approach is presented in more detail
in [9].

C. Polynomial Expansion

The last approach we consider here is based on the MMSE
estimator exploiting the covariance matrices of the channels,
which are assumed to be available at the BS. The MMSE
estimator [10] is given by

~ MMSE —H [— _ —H -1
by = RuPy, (PoRwP, +8) o) O
where y) = vec(Y?) is the vectorized form of the receive

matrix during the training phase, ﬁj = PJT ® Iy and Ry,
is the covariance matrix defined in (5) and hy; = vec(Hy;).
The covariance matrix of the contaminating signal is given as

B

Z ?ijjﬁf + Np.
j=1,j#b

In order to reduce the complexity of the MMSE receiver,
[10] proposes three different approaches. We will consider two
of them in the sequel. The simplest approach is to diagonalize
the covariance matrices, i.e., we set all off-diagonal elements
to zero. This reduces the computational complexity signifi-
cantly since PbRbbﬁbH + S}, is then a diagonal matrix which
can be inverted easily. The diagonalized estimator is given as

Y

(10)

diag
h’bb

~ /P! (PP 4 si)
where Ri‘® and S¢“ are obtained by setting all off-diagonal
elements of Ry, and S} to zero.
Another approach to reduce the complexity of the estimator
is to compute the inverse appearing in (9) by means of an L-
degree polynomial approximation. This leads to the so-called
PEACH estimator [10]:
gL
=RyP, > a(Iyy,
1=0

~ PEACH

— . _H
by, — a(PyRy Py + Sp))'y,

12)

= -MMSE
-*-DIAG
~~AM
-0-AD
-s-KAL
|-&-PEACH|

NMSE

s
SNR [dB]

(a) Clarke’s multi-path model

- -MMSE

NMSE

(c) COST 2100 model

Fig. 2. Performance of channel estimation techniques under the presence of
pilot contamination.

where 7, is the length of the pilot sequences and the weighting
factor is given by o~ ! = tr (ﬁbRbbﬁf + Sb) /2.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the chan-
nel estimation techniques discussed in Section IV using the
correlated Rayleigh Model and the COST 2100 model, since
these models align well with the realistic scenarios for massive
MIMO. We use B = 7 cells, M = 64 antennas per BS and
all cells contain the same number of active UEs (K), set to 9.
Each cell uses the same set of K orthogonal pilot patterns. We
adopt the identity matrix as a basis pilot matrix and consider
the case that the interfering signals are as strong as the signal
of interest, i.e., SIR = 0 dB similar to [10]. As an indicator of
the performance measure, we use the normalized mean squared
error (NMSE), defined as

> ; (13)

NMSE = 101log, ( Z I,

where hyy, is the actual channel of UE k of cell b to the BS
in cell b and ﬁbbk is its estimate.

In the following, the diagonal estimator, Kalman filtering
technique, the amplitude and angular based techniques are
identified as “DIAG”, “KAL”, “AM” and “AD” respectively.

— hup, |2
Ao, |2
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Some estimation techniques require a time-varying channel,
therefore we assumed that the channel evolves over 20 training
phases and set the time between two training phases to 1ms.
The parameters used for the channel estimation techniques
are the same as that in the original work, except for the AD
estimator, where the averaging was done using 10 channel
estimates.

Fig. 2a, Fig. 2b and Fig. 2c depict the performance of
the different channel estimation techniques for Clarke’s multi-
path model, the correlated Rayleigh model and the COST
2100 model respectively. A lower value of NMSE indicates
better performance. We see that all the channel estimation
techniques considered in this work show similar behaviour for
the correlated Rayleigh and COST 2100 models, indicating
that the correlated Rayleigh model can be used as a viable al-
ternative for the performance evaluation of channel estimation
techniques in massive MIMO.

We observe that the performance of the blind method (AM)
and its extension (AD) is slightly degraded for the correlated
Rayleigh and the COST 2100 models, when compared to
Clarke’s model, because of the spatial correlation in these
channel models. In particular, for SNR > 0 dB, the AM
technique is degraded by about 0.5 dB to 1 dB for the
correlated Rayleigh model and by about 2 dB to 3.5 dB for
COST 2100 model, when compared to Clarke’s model. The
corresponding degradation for the AD technique is 1 dB to
1.3 dB for the correlated Rayleigh model and 2.5 dB to 4 dB
for COST 2100 model. The small difference in the amount
of degradation between the correlated Rayleigh and COST
2100 models is because their SVD spreads are similar, but not
identical (see Fig. 1).

Also, the AD technique, which shows an improved per-
formance for Clarke’s model for small values of M in [9],
shows minimal improvement for M = 64. This behaviour can
be explained by investigating the channel power spectrum of
the UEs in more detail. In Clarke’s model, the UEs can be
separated by their channel powers in the frequency domain
pretty well. In fact, the power of the individual UE channels
is clustered in different frequency ranges, thereby enabling
improved cancellation of signals of the UEs. However, the
presence of spatial correlation in practical channels reduces
the extent of channel power clustering. Therefore, the AD
technique does not provide any improvement over the AM
technique for the correlated Rayleigh and COST 2100 models
as indicated in Fig. 2b and Fig. 2c respectively.

The KAL technique performs almost identically under all
the models. This can be explained by the fact that only the
pilot sequence hopping strategy involved in this estimator
requires uncorrelated channels, while the Kalman filter works
for both correlated and uncorrelated channels as long as it
knows the total contamination power. Since the simulations
were performed with only 9 UEs, the effect of pilot sequence
hopping is minimal and the KAL technique shows identical
performance for all the models. The performance of the DIAG
estimator is similar to that of the KAL technique.

The MMSE and the PEACH estimators provide the best
performance under all the channel models. This is intuitively
clear, since these estimators are the only ones exploiting

knowledge about the covariance matrices of the channel of
interest and the interfering channels. Moreover, we can im-
prove the performance of the PEACH estimator by increasing
the degree of the polynomial approximating the inverse of the
covariance matrix.

VI. CONCLUSION

In this work, we examined the effect of the underlying
channel model on the performance of massive MIMO systems.
We observed that the COST 2100 and the correlated Rayleigh
models, incorporating the spatial correlation parameters serve
as a good approximation for massive MIMO channels, with
the latter being more convenient for analysis owing to its lower
computational complexity. Then, we evaluated the perfor-
mance of selected channel estimation techniques for different
channel models. We discovered that the blind channel estima-
tion techniques of amplitude and angular based projection are
more sensitive to the underlying channel model and show a
small degradation in performance for the aforementioned chan-
nel models with spatial correlation, when compared to Clarke’s
model. We demonstrated that Kalman filter based technique
and the diagonal estimator show similar performance for all
the channel models, while the polynomial expansion estimator
shows the best performance.
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