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Abstract—3D reconstruction has a wide variety of applications
in computer graphics, robotics or digital cinema production,
among others. With the rapid increase in computing power,
it has become more feasible for the reconstruction algorithms
to run online, even on mobile devices. Maximum likelihood
estimation (MLE) is the adopted technique to deal with the sensor
uncertainty. Most of the existing 3D reconstruction frameworks
only recover the mean of the reconstructed geometry. Recovering
also the variance is highly computationally intensive and is seldom
performed. However, variance is the natural choice of estimate
quality indicator. In this paper, the associated costs are analyzed
and efficient but exact solutions to calculating partial matrix
inverses are proposed, which apply to any general problem with
many mutually independent variables. Speedups exceeding an
order of magnitude are reported.

I. INTRODUCTION

A typical 3D reconstruction pipeline consists of several
stages. First, visual features [1] are extracted from the images
which are then matched using approximate nearest neighbor
search [2] and subsequently pruned using RANSAC along with
geometric estimation [3]. Depending on the scale of the prob-
lem, the matching can be either done in all-to-all manner or
hierarchically using approximate clustering first and then fine
grained matching within the clusters [4]. The camera poses are
given by relative transformations between the matched images
and the landmark positions are given by triangulation of the
matched feature points. Because of different sources of the
errors, the initial estimate alone is rather noisy and simply
concatenating the calculated geometrical transformations and
triangulating the observed feature points as they come, would
quickly diverge catastrophically. Therefore, one more crucial
step is employed: the bundle adjustment (BA).

Most of the 3D reconstruction implementations work incre-
mentally: only one or a few frames are integrated at a time,
followed by a BA step. Bundle adjustment finds the maximum
likelihood estimation of the camera poses and of the structure,
given the observations, and is most commonly solved using
nonlinear least squares optimization. Other approaches [5]
are possible. To solve the nonlinear least squares, conjugate
gradient (CG) or a direct solver can be employed. While CG
is often claimed as a linear cost algorithm when applied to
linear solving [6], [7], it typically takes more iterations of the
nonlinear solver to converge – being effectively slower than a
direct solver.

Fig. 1. Marginal covariances for the 3D reconstruction of the bridge sequence
from the Fast & Furious 6 dataset, displayed in false colors (orange means
high confidence, blue – low confidence). Data courtesy of Double Negative
Visual Effects.

The seminal paper [8], [9] describes design and imple-
mentation of an efficient BA package with the basic traits
shared by most of the other implementations. The problem
is formulated as a Levenberg-Marquardt [10] nonlinear least
squares optimization. It makes use of the problem sparsity: not
all of the points are observed by all of the cameras and the
system graph is usually far from being fully connected. It also
makes use of the characteristics of the BA problem which
typically contains a relatively large amount of landmarks
that have no relations among themselves (they form a large
independent set from the graphical point of view). This gives
rise to diagonal sub-matrices that make the underlying linear
problem easier to solve than by applying a general linear solver
directly to the whole matrix.

Using unstructured photograph collections from the Internet
allows for extremely large scale 3D reconstruction [4]. The
problems that need to be tackled exist both in the vision part
of the reconstruction pipeline as well as in the BA optimizer.
In the vision part, the feature matching becomes the bottle-
neck, as it scales with O(n2) in the number of images and
hierarchical matching is proposed to solve the problem both
more efficiently and in parallel. The authors implement two
optimization strategies which are selected based on problem
size. The first one is a block diagonal preconditioned conjugate
gradient solver. The second one is rather similar to a sparse BA
(SBA), with the difference that unlike in SBA where the Schur
complement [11] is solved using dense LDL> factorization,
a sparse Cholesky factorization is employed here to gain up
to an order of magnitude speedup for large systems. Similar
speedups were reproduced by e.g. [12].
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To further accelerate the optimization part, it is possible to
employ parallelization. CG solvers are parallelized easily, as
they basically only require parallel implementation of sparse
matrix-vector multiplication routine [13]. For direct solvers,
distributed optimization techniques were proposed [14] where
the problem is split into several sub-problems with minimal
graph separators that are solved independently, followed by a
separator optimization pass. Such methods can be easily used
for parallelization on clusters.

Parameterizations taking advantage of the incremental solv-
ing were proposed as well, in [15], relative camera and pose
formulation is employed, rather than using a single global
Euclidean coordinate frame. After adding a new camera pose
and the associated observations, it is possible to find the
variables where this addition induced a significant change and
only a reduced system consisting of those variables and their
neighbors is solved. The size of the system that needs to
be solved is only a fraction of the full system, making the
optimization faster. A standard Schur complement solver is
employed.

Another approach is acceleration via graph sparsification.
In [16], rather than optimizing the entire problem only the
camera poses are optimized, with the observations taking form
of three-view constraints related to the tri-focal tensor. A
similar generalized approach is proposed in [17] where the
structure variables would be represented implicitly by the
corresponding triangulation functions and therefore only the
camera poses and optionally also their calibrations would
be optimized. In both cases, the structure points can be
triangulated after-the-fact in the least squares fashion from
all the cameras that observe each given point. Since these
methods effectively solve a pose graph, it is possible to use
the appropriate incremental algorithms [18], [19], [20] as well.

The rest of the paper is structured as follows: in the
next section, the related work is described. In section III,
the nonlinear least squares is briefly revisited and a solver
using Schur complement is formulated. section IV derives the
formulas for efficient sparse covariance recovery from Schur
complement. The performance of the proposed algorithm is
evaluated in section V. The paper concludes with section VI.

II. RELATED WORK

Even though recovering the mean of the estimate in the
BA problems is relatively simple even at large scale, as
documented by the previous section, recovering its covariance
is significantly more difficult. One of the problems is that
while the system matrix is sparse and can get very large,
its inverse is completely dense and the memory footprint
of maintaining such a matrix would be prohibitive, easily
reaching hundreds of GB. Fortunately, for quality assurance
and many other applications, only certain parts of the inverse
are of interest – especially its block diagonal. Still, the problem
of the computational complexity remains, which is the likely
reason this problem was not widely addressed before.

While the covariances are explicit in Kalman filters and
can also be easily recovered in information filters, filtering is

not widely used in BA or the 3D reconstruction problems in
general, since it is less efficient [21] and cannot take advantage
of the various sparsity optimizations described in the previous
section. In addition, there is a strict limit of the system size for
which a dense matrix can be kept in RAM of todays systems,
which would only allow moderate size 3D reconstructions.

Recovering the covariances in the context of nonlinear least
squares is more difficult. Thrun [22] proposes the use of so-
called Markov blankets to approximate covariances of the
poses of a robot. These are sub-blocks in the inverses of
smaller matrices that each contains the pose in question and
also the adjacent landmarks. It has been shown that those
estimates are over-confident.

In [7] a visual mapping of the sunken RMS Titanic is
discussed and both the estimate and its covariance is recov-
ered. The covariance is maintained incrementally: first, the
covariances of the newly introduced variables are calculated
by solving for the corresponding columns of the inverse system
matrix. This column matrix is then fed to a bank of Kalman
filters which update the covariances of the older variables.

An exact method for sparse covariance recovery was pro-
posed in [23]. It is based on a recursive formula [24], [25],
which calculates any covariance elements on demand from
other covariance elements and elements of the Cholesky
factorization of the system matrix. The downside of these
methods is the need to calculate Cholesky factorization of the
entire system, rather than to reuse the Schur complement and
its factorization.

The authors of [26] compare the results of their recon-
struction to a surveyed ground truth and employ the point to
the nearest-ground-truth-triangle distance as the error metric.
Here, the robustness of the results only depends on the point
could alignment algorithm, which is a widely researched
topic. While this is a viable alternative to covariances as a
quality assurance method, it is of lower importance in real
applications: why use a lower precision reconstruction if a
precise one is at hand?

In the context of the technique proposed in this paper, it is
not significant whether the underlying problem is monocular,
stereo or other form of BA. It applies to all problems which
can be solved efficiently using the standard Schur complement
technique. Covariances in pose graph problems can be calcu-
lated efficiently using the approach described in our previous
paper [27].

III. OPTIMIZATION PROBLEM FORMULATION

In our context, the estimation problem is formulated as a
maximum likelihood estimation (MLE) of a set of variables
θ = [θ1 . . . θn] given a set of observations z = [z1 . . . zm].
Without the loss of generality, it is possible to order the
variables in such a way that θ1 . . . θp are the p camera poses
and θp+1 . . . θn=p+1+l are the l landmark positions and to
assume that each constraint is between a pose variable and a
landmark variable. Situations with additional types of variables
(e.g. the intrinsic camera parameters) are possible. Situations
with only a single type of variable (e.g. as in pose graph
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optimization) are also possible, although the ordering for
Schur complement is more elaborate; one needs to compute
the bipartite coloring if one exists or resort to maximum
independent set if it does not.

The goal is to obtain the maximum likelihood estimate of
a set of variables in θ, given the available observations in z:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z))} , (1)

For every observation zk = hk(θik , θjk)− vk, the noise vk is
assumed to be normally distributed, with covariance Σk:

P (zk | θik , θjk) ∝ exp

(
−1

2
‖ hk(θik , θjk)	 zk ‖2Σk

)
, (2)

where hk(θik , θjk) is the nonlinear measurement function, zk
is the constraint between the variables θik and θjk , 	 is the
vectorial inverse composition operator. The MLE in (1) is
found by solving the following nonlinear least squares (NLS):

θ∗ = argmin
θ

{
1

2

m∑
k=1

‖hk(θik , θjk)	 zk‖2Σk

}
. (3)

Iterative methods, such as Gauss-Newton are often used
to solve this NLS. This is usually addressed by solving a
sequence of linear systems at every iteration. Linear approxi-
mations of the nonlinear residual functions around the current
linearization point θi are calculated as:

r̃(θi) = r(θi) + J(θi)(θ 	 θi) , (4)

with r(θ) = [r1, . . . , rm]
> being a vector gathering all non-

linear residuals of the type rk = hk(θik , θjk)	 zk and J
being the Jacobian matrix which gathers the derivatives of the
components of r(θ). With this, the NLS in (3) is approximated
by a linear one and solved by successive iterations:

δ∗ = argmin
δ

1

2
‖Aδ − b‖2 , (5)

with the matrix A , Σ-1/2J and the vector b , −Σ-1/2r de-
fined the same as in [28]. The correction δ , θ 	 θi towards
the solution is obtained by solving the normal equation:

A>Aδ = A>b , or Λδ = η , (6)

where we define the information matrix Λ , A> A and the
right hand side (r.h.s) η , A> b.

By taking advantage of the structure of the problem, rather
than solving the normal equation directly using sparse factor-
ization solver, it is possible to employ the Schur complement
trick. In case the poses are ordered first, followed by all the
landmarks, the normal equation (6) can be partitioned as:[

A U
U> D

]
·
[
x
y

]
=

[
a
b

]
, (7)

where the D is supposed to be invertible and also block
diagonal (since there are no observations that would relate
two landmark variables and therefore no off-diagonal blocks
are filled). The Schur complement of A is:

Schur(A) , A− UD-1U> . (8)

This can be used to solve for the original system as:

(A− UD-1U>) x = a− UD-1b (9)

y = D-1 (b− U>x) , (10)

where the former is a smaller, more dense system that can be
solved using a general linear solver and the latter is merely a
matrix-vector product. The advantage of this procedure is that
inverting D amounts to inverting its individual diagonal blocks
which is embarrassingly parallel operation. Additionally, in the
BA problems D contains the most of the rank of the system
matrix so that the large part of the system is solved quickly.

To solve for (9), several types of direct solvers have been
applied in literature. It is possible to use dense Cholesky or
dense LDL> decompositions1. Densities of as high as 40 %
occur on e.g. the Venice dataset [29]. Sparse Cholesky solvers
have shown about an order of magnitude speedups, especially
on large systems and while using a good ordering. The fill-
reducing orderings used for sparse Cholesky in BA imple-
mentations include MMD [30], AMD [31] or even reverse
Cuthill-McKee [32] (although most likely only in an attempt
to point at disadvantages of direct solvers). For perspective,
dense Cholesky solver on GPU achieves about two orders of
magnitude speedup (including data transfer) but is limited by
the available memory.

While sparse LDL>, LU or even QR seem like viable
options, it is required to take the pivoting into the account:
these factorizations are not implicitly numerically stable (un-
like Cholesky) and may require row or column interchanges as
the factorization progresses. These interchanges are typically
implemented to improve the results numerically but ignore the
fill-in they cause. E.g. calculating the LU decomposition of the
Λ matrix of Venice requires more than 15 GB of memory and
two hours of runtime (while Cholesky runs in a few seconds).

IV. COMPUTING COVARIANCES EFFICIENTLY

The covariance of the estimated variables is obtained by
taking an inverse of the information matrix, Σ = Λ-1. Carrying
this inverse out yields a dense matrix, as already mentioned
above, and should be avoided. In case a sparse factoriza-
tion Λ = R>R can be calculated, the following recursive
formula [24], [25] can be used to calculate elements of Σ
at the positions of non-zero elements in R:

Σi,i =
1

Ri,i

 1

Ri,i
−

n∑
k=i+1,Ri,k 6=0

Ri,kΣk,i

 , (11)

Σi,j =
1

Ri,i

− j∑
k=i+1,Ri,k 6=0

Ri,kΣk,j −
n∑

k=j+1,Ri,k 6=0

Ri,kΣj,k

 , (12)

where Mi,j refers to an element of some matrix M at row i
and column j. Unfortunately, this formula cannot be directly
applied to the Schur-complemented system ΛΣ = I:[

A U
U> D

]
·
[

Σp Σpl

Σ>pl Σl

]
=

[
Ip 0
0> Il

]
. (13)

1In here, the D is a generic diagonal matrix, other than that in (8).
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where both Σ and the identity matrix I are partitioned the
same way as Λ is partitioned in (7). Note that the subscripts
here are only identifiers rather than element indices. By taking
Cholesky decomposition S>S , Schur(A), the covariances of
the camera variables are:

S>SΣp = Ip − UD-10> = Ip so Σp = (S>S)-1 , (14)

and thus the recursive formula in (11) and (12) can be used
efficiently.

The situation is more interesting in recovering the covari-
ances of the landmarks. It would be possible to make use of
T>T , Schur(D) and (14) to write:

Σl = (D − U>A-1U)-1 = (T>T )-1 . (15)

The matrix inverted here is positive definite and the recursive
formula could be used again. However, the inverse A-1 is
involved here: unless the underlying problem forms a bipartite
graph which only really happens with vanilla forms of BA.
As soon as e.g. intrinsic camera parameters, GPS or odometry
measurements are introduced, A is no longer block diagonal
and inverting it is much more difficult than inverting D in (8).
Applying the Woodbury formula to (15):

Σl = D-1 +D-1U>(A− UD-1U>)-1UD-1 , (16)

Σl = D-1 +D-1U>ΣpUD
-1 , (17)

Σl = D-1 +D-1U>S-1S->UD-1 . (18)

Evaluating all of (18) would yield a dense matrix with the
size approaching that of the full Σ which would be counter-
productive. Instead, taking advantage of symmetry of Λ (and
thus also of D and Σ), it is possible to write B , S->UD-1

in order to get Σli,j = D-1
i,j +B>i,∗ ·B∗,j . Note that UD-1 is

a sparse matrix with the number of nonzero blocks in each
column equal to the number of cameras that observe the point
corresponding to that column; S-> can be efficiently calculated
using sparse sparse back-substitution.

Finally, to get the cross-covariances between the camera and
the landmark variables, it is possible to use (9) with covariance
in place of a and identity on the right:

Σpl = (S>S) \ (0− UD-1Il) , (19)

Σpl = −ΣpUD
-1 . (20)

Again, computation can be saved by taking advantage of
sparsity of the matrices so that recovering the full Σp is not
necessary.

V. EXPERIMENTAL EVALUATION

The proposed method for recovering marginal covariances
of points was tested on two public datasets, the Guildford
Cathedral2, Venice [29] and on the Fast & Furious 6 dataset
which was kindly provided by Double Negative Visual Ef-
fects3. Two additional methods were compared: recursive
formula on Cholesky factor of the system matrix, and recursive

Cathedral Venice Fast & Furious 6

Cameras 92 871 160
Landmarks 57, 957 530, 304 136, 453
Visibility 7.28 obs. / lm. 5.35 obs. / lm. 3.42 obs. / lm.
Λ 142.93 MB 980.33 MB 167.70 MB
Schur(A) 1.04 MB 45.06 MB 1.14 MB
S 1.04 MB 84.60 MB 1.73 MB

TABLE I
CHARACTERISTICS OF THE EVALUATED DATASETS.

formula on Schur(D) as in (15). More details about the
datasets are listed in Table I.

The experiments were performed on the Salomon super-
computer, part of the IT4I Czech National Supercomputing
Center. Each compute node is equipped with a pair of 12-
core Xeon E5-2680 v3 running at 2.50 GHz and 128 GB of
RAM. Memory consumption tests were performed on SGI
UV2000 node, equipped with 14 of 8-core Xeon E5-4627 v2
at 3.3 GHz and 3.25 TB (Terabyte) of RAM; timing of these
tests is denoted by the dagger† symbol.

Sparse block schemes [33] were used throughout the whole
implementation, which previously proved about an order of
magnitude speedups for batch recursive formula [27]. Block
matrix products and decompositions were accelerated by Tesla
K20x GPU.

Cathedral Venice Fast & Furious 6
Proposed 0.165 s 7.060 s 0.293 s
Size of sparse S-> 1.24 MB 109.79 MB 2.97 MB
Chol(Λ) 1.251 s 16.856 s 0.951 s
Rec. formula all 3.308 s 82.689 s 3.493 s
Size of Chol(Λ) 74.05 MB 572.52 MB 93.33 MB
Schur(D) 160.662 s 4457.539† s 149.999 s
Chol(Schur(D)) 73† hours N/A 139† hours
Rec. formula lm. 4459.647† s N/A 5† hours
Size of Schur(D) 37.87 GB 398.01 GB 46.95 GB
Size of Chol(T ) 106.70 GB ∼ 7.37 TB 493.43 GB

TABLE II
TIMING RESULTS AND THE ASSOCIATED SPACE REQUIREMENTS OF THE

EVALUATED METHODS (BEST TIMES IN BOLD).

Times required to calculate the marginal covariances are
reported in Table II. The computation of the covariances of
landmarks directly from Schur complement is the fastest for all
tested datasets, followed by the use of recursive formula. The
proposed method provides more than an order of magnitude
speedup. The use of Schur(D) and recursive formula is pro-
hibitive by both time and considerable memory requirements.

The magnitudes of the calculated landmark covariances are
displayed as false color, see Figure 1 or Table I. From the
colored view, it is apparent which parts of the reconstruction
are more precise and which are not. The user can use this type
of images to re-capture poorly reconstructed areas and obtain
a high accuracy 3D reconstruction.

2can be obtained at http://cvssp.org/impart/
3http://www.dneg.com/
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VI. CONCLUSION

We proposed methods for efficiently finding covariances in
NLS problems which are solved using Schur complement,
such as BA. The implementation of the proposed formulas
significantly outperformed the existing methods, by a factor
of 20× for Cathedral, 12× for Venice and 12× for Fast &
Furious 6. At the same time, the memory consumption for
calculating the inverse of square root of the Schur complement
is comparable to the storage of the square root itself (which is
required by the nonlinear solver), and is much smaller than the
storage needed for square rooting the full system for recursive
formula. Using the Schur complement of the landmarks is
prohibitive as it requires tens to hundreds of GB of storage.

The calculated covariances can then be interactively dis-
played using false color rendering and used for quality as-
sessment of the 3D reconstruction. The proposed methods are
fast enough to be run on-set so that additional data capture can
take place if the reconstruction quality is not good enough.
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