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Abstract—Impactive contact between a vibrating string and a
barrier is a strongly nonlinear phenomenon that presents several
challenges in the design of numerical models for simulation
and sound synthesis of musical string instruments. These are
addressed here by applying Hamiltonian methods to incorporate
distributed contact forces into a modal framework for discrete-
time simulation of the dynamics of a stiff, damped string. The
resulting algorithms have spectral accuracy, are unconditionally
stable, and require solving a multivariate nonlinear equation that
is guaranteed to have a unique solution. Exemplifying results are
presented and discussed in terms of accuracy, convergence, and
spurious high-frequency oscillations.

I. INTRODUCTION

Distributed contact between a vibrating string and a barrier

is an intrinsic feature of many musical string instruments.

The nature of the impactive interaction varies from sustained

(e.g. string-bridge contact in Eastern instruments such as the

sitar, tanpura, and the biwa) to more incidental (e.g. string-

fingerboard contact in generating a ‘slap bass’ sound on the

bass guitar). In all cases, collisions result in the generation

of high-frequency components, which often are an important

characteristic of the instrument.

Such contact is frequently simulated with digital waveg-

uides, considering the collisions to be either inelastic [1]–[3] or

semi-elastic [4], or even to assume a perfectly rigid barrier [5].

Methods based on modal expansion have also been proposed

[6], [7]. Apart from [7], which studies impactive interaction at

a single point of the string, relatively little attention is given in

these studies to rigorous analysis of numerical stability. More

recently, provably stable formulations have been derived in fi-

nite difference form, by construction of time-stepping schemes

that respect the energy balance inherent to the underlying

continuous-domain model (see, e.g. [8], [9]).

All of these models inevitably feature some form of dis-

cretisation error. For example, the tanpura models presented

in [9], [10] exhibit severe mode detuning unless a high

sampling frequency is used. Further numerical errors may

arise due to the strongly nonlinear nature of the contact forces

(simulated in energy-conserving formulations using a discrete

gradient in either three-point [11] or two-point form [9], [10]),

making numerical models prone to aliasing and spurious high-

frequency oscillation.

To better address and further investigate these issues, this

paper presents provably stable numerical formulations based

on a modal approach, which allows eliminating mode detuning

altogether and in addition facilitates exact modal damping.

Section II outlines a continuous-domain description of the

string model, specifying the contact forces in power-law form

and modally expanding the string motion. Time discretisation

is then performed in Section III by direct application of

difference and sum operators to a first-order form of the

mode differential equations, allowing direct control over use-

ful energy properties, and yielding a two-point scheme. For

comparison, a three-point form is also derived. The contact

forces are incorporated using a discrete gradient at a finite

set of barrier points. The two-point and three-point scheme

are both shown to be strictly dissipative for non-zero damping

constants. Spectral accuracy is achieved by adjusting the modal

elasticity and damping constants in such a way that numerical

dispersion and numerical attenuation are exactly compensated

for. In Section IV, the accuracy of these formulations is

tested against an analytical result and further investigated

through simulation of the vibrations of a sitar-like string-

barrier configuration.

II. CONTINUOUS-DOMAIN FORMULATION

A. Model Equations

The transverse motion for a stiff string, taking into account

collisions with a barrier, may be described by:

ρA
∂2y

∂t2
= T

∂2y

∂x2
− EI

∂4y

∂x4
+ γ(β) + Fb(x, t), (1)

where ρ, A, T , E, and I are the mass density, cross-sectional

area, tension, Young’s modulus, and moment of inertia, respec-

tively. Following previous musical acoustics studies, contact is

modelled with a power law. Here the force density

Fb(x, t) = −kb⌊{yb(x)− y(x, t)}
χ
⌋ (2)

models string-barrier collisions over the spatial domain of

the barrier profile yb(x), where kb and χ are the contact

parameters. The term ⌊yχ⌋ denotes u(y) · yχ, where u(y) is

the unit step function. In preparation of discretisation, we write

the contact force density in Hamiltonian form

Fb(x, t) = −
∂Vb

∂y
, (3)
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where

Vb(y) =
kb

χ+ 1
⌊{yb(x)− y(x, t)}

χ+1
⌋ (4)

is the contact potential energy density. Frequency-dependent

string damping is incorporated by defining parameter γ as a

function of the wave number β

γ(β) = 2ρA
[

σ0 +
(

σ1 + σ3β
2
)

|β|
]

, (5)

where the fit parameters σ0,1,3 can be directly related to the

three-parameter damping formulation by Woodhouse in [12].

B. Modal Expansion

The solution to (1) can be expressed as a superposition of

modal displacements:

y(x, t) =
M
∑

i=1

vi(x)ȳi(t), (6)

where ȳi(t) denotes the displacement of the ith mode, vi(x) =
sin(iπx/L) is the corresponding modal shape (spatial eigen-

function) for simply supported boundary conditions, and M is

the number of modes taken into account (for an exact solution,

M → ∞). After substitution of (6) into (1) and applying a

spatial integral over the length of the string, one obtains that

the dynamics of each of the modes is governed by

m̄
∂2ȳi
∂t2

+ r̄i
∂ȳi
∂t

+ k̄iȳi(t) = F̄b,i(t), (7)

in which m̄ = (ρAL)/2 is the modal mass (which is the same

for all modes), and where k̄i =
1

2
L
(

EIβ4
i + Tβ2

i

)

and r̄i =
1

2
Lγ(βi) are the elastic and damping constants of the mode,

respectively. Within the constraint r̄i < 2
√

k̄im̄ the modal

frequencies (ωi) and decay rates (αi) are

ωi =
√

k̄i/m̄i − α2
i , αi =

r̄i
2m̄

= σ0 + σ1βi + σ3β
3
i . (8)

The modal driving forces in (7) are

F̄b,i =

∫ L

0

vi(x)Fb(x, t)dx. (9)

III. NUMERICAL FORMULATION

A. Discretisation in Space

Given that Fb(x, t) is non-analytic, we approximate the

integral in (9) as a Riemann sum:

F̄b,i ≈
K
∑

k=1

vi,k Fb,k(t)∆x, (10)

where Fb,k(t) ≡ Fb(xk, t) and vi,k ≡ vi(xk), with K chosen

contact points xk spaced ∆x apart along the x-axis.

B. Discretisation in Time

In order to facilitate the derivation of a two-point scheme,

equation (7) is first re-formulated in first-order form:

∂ȳi
∂t

=
p̄i(t)

m̄
, (11)

∂p̄i
∂t

= −k̄iȳi(t)− r̄i
∂ȳi
∂t

+∆x

K
∑

k=1

vi,k Fb,k(t), (12)

in which p̄i(t) represents the momentum. Taking the temporal

step as ∆t = fs
−1

, where fs is the sampling frequency, the

displacement at discrete time instances indexed with n is

denoted yn ≡ y(n∆t). Using the difference and sum operators

δyn = yn+
1

2 − yn−1

2 ≈ ∆t

∂y

∂t

∣

∣

∣

t=n∆t

, (13)

µyn = yn+
1

2 + yn−1

2 ≈ 2 y
∣

∣

∣

t=n∆t

, (14)

equations (11,12) can be discretised as

δȳ
n+1

2

i

∆t

=
µp̄

n+1

2

i

2m̄
, (15)

δp̄
n+1

2

i

∆t

= −k̄i
µȳ

n+1

2

i

2
− r̄i

δȳ
n+1

2

i

∆t

+∆x

K
∑

k=1

vi,kF
n+1

2

b,k , (16)

which is equivalent to applying the trapezoidal rule. The non-

analytic form of the contact force warrants special treatment

regarding stability [8], [9]. A suitable term is obtained by

discretising (3), yielding the two-point discrete gradient:

F
n+1

2

b,k = −
δV

n+1

2

b,k

δy
n+1

2

b,k

= −
Vb,k(y

n+1

b
)− Vb(y

n
b,k)

yn+1

b,k − yn
b,k

. (17)

Note that in the limit yn+1

b,k → ynb,k, (17) must be evaluated

as −V ′

b(y
n
b,k), where V ′

b(y) ≡ ∂Vb/∂y. Using the scaled

momentum value q̄ni = (∆t/(2m̄))p̄ni , the system equations

(15,16) can be written more conveniently as

δȳ
n+1

2

i = µq̄
n+1

2

i , (18)

δq̄
n+1

2

i = −aiµȳ
n+1

2

i − biδȳ
n+1

2

i + ξ∆x

K
∑

k=1

vi,kF
n+1

2

b,k , (19)

where ξ =∆2
t/(2m), ai = k̄i∆

2
t/(4m̄), and bi = r̄i∆t/(2m̄).

Once the contact force densities F
n+1

2

b,k are known, the dynam-

ics of each mode can be simulated by solving for ȳn+1
i and

q̄n+1
i at each time step. To eliminate numerical dispersion, a

‘pre-warping’ procedure is first carried out for each mode, by

replacing the elasticity and damping values as follows:

k̄i → k̄∗i =
4m̄a∗i
∆2

t

, r̄i → r̄∗i =
2m̄b∗i
∆t

, (20)

where the adjusted coefficients that replace (ai, bi) in (19) are

a∗i =
1− 2RiΩi +R2

i

1 + 2RiΩi +R2
i

, b∗i =
2
(

1−R2
i

)

1 + 2RiΩi +R2
i

, (21)

with Ri=exp(−αi∆t) and Ωi = cos(ωi∆t). Using frequency-

domain analysis it can be shown that this ensures that the

modal parameters (ωi, αi) are exactly preserved under dis-

cretisation [13]. Note that the bandwidth constraint ωi < π/∆t

must be respected, which sets an upper limit to M in the modal

series expansion in (6).

C. A Vector-Matrix Update Form

Consider now an M × K matrix V with rows that hold

the (spatially sampled) modal shapes for K points along the

x-axis. From (6) and (10) it then follows that

yn = Vȳn, F̄
n+1

2

b
= ∆xV

T
F

n+1

2

b
, (22)
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where yn is a column vector holding the string displacements

at the K points, and ȳn is a column vector holding the M

modal displacements; similarly F̄
n+1

2

b
and F̄

n+1

2

b
are column

vectors holding M modal driving forces and K contact force

densities, respectively. A vector-matrix form of (18,19) can

then be written as

δȳn+1

2 = µq̄n+1

2 , (23)

δq̄n+1

2 = −Aµȳn+1

2 −Bδȳn+1

2 + ξ∆xCVT
F

n+1

2

b
, (24)

where A and B are diagonal matrices with entries Aii = a∗i
and Bii = b∗i . A convenient vector-matrix update is found by

using (23) to define s̄ = δȳn+1

2 = µq̄n+1

2 , and substituting

ȳn+1 = s̄+ ȳn, q̄n+1 = s̄− q̄n, (25)

in (24), which allows solving for s̄ with

s̄ = ū+ ξ∆xCVF
n+1

2

b
, (26)

with C = (I + A + B)
−1

, and where ū = C [(q̄n −Aȳn)].

Hence once the contact force density vector F
n+1

2

b
is known,

eq. (26) immediately yields the step vector s̄, after which the

modal state vectors ȳn+1 and q̄n+1 can be updated using (25).

Note that while A, B, and C are diagonal, V is a full matrix.

D. Solving for the Contact Force Densities

Pre-multiplying (26) by V yields

s = u+ ξ∆xWF
n+1

2

b
, (27)

where s = Vs̄, u = Vū, and W = VCVT. After substituting

(17) one obtains the multivariate nonlinear equation

s− u+∆xξW
Vb(s+ yn)− Vb(y

n)

s
= 0. (28)

This can be solved iteratively with Newton’s method, employ-

ing the Jabobian J = I+WD, where

D = ∆xξ
s ◦ V ′

b(s+ yn)− Vb(s+ yn) + Vb(y
n)

s ◦ s
, (29)

in which the division is componentwise and where ◦ denotes

componentwise multiplication. Once s is known, the corre-

sponding force density vector F
n+1

2

b
can be plugged into (26),

allowing an update of ȳn+1, q̄n+1 and yn+1.

E. Numerical Energy and Stability

The energy (Hamiltonian) of mode i at t=n∆t is

H̄n
i = 1

2
m̄

−1

(p̄ni )
2
+ 1

2
k̄∗i (ȳ

n
i )

2
. (30)

This is a quadratic form in p̄ni and ȳni that is non-negative

since a∗i ≥ 0 therefore k̄∗i ≥ 0. The total numerical energy at

time t = n∆t can be formulated as the sum of all the modal

energies plus the spatial integral over the contact potentials:

Hn =
M
∑

i=1

H̄n
i +

K
∑

k=1

Vb(y
n)∆x

= ξ
−1
[

(q̄n)Tq̄n + (ȳn)TAȳn
]

+∆x1
TVb(y

n), (31)

where 1 denotes a vector with all K elements equal to 1. To

arrive at a global energy balance, pre-multiply the left-hand

side of equation (24) by µq̄n+1

2 and the right-hand side by

δȳn+1

2 , yielding

∆−1
t

[

Hn+1 −Hn
]

= −Qn+1

2 , (32)

where

Qn+1

2 = (ξ∆t)
−1

[

ȳn+1

2 )TBδȳn+1

2

]

(33)

is the power dissipated across the time step. Under the

damping constraint introduced in Section II-B, the diagonal

matrices A and B are real-valued and positive definite, in

which case both Hn and Qn+1

2 are non-negative. Hence the

system can only be dissipative, or - in the absence of damping

- conservative, which directly implies numerical stability.

F. Existence, Uniqueness and Convergence

It is generally not a given that a multivariate nonlinear

equation arising in an implicit scheme actually has a solution,

and that if it does exist that it is unique [14]. The condition

for a unique solution is that the Jacobian is positive definite

[15], which holds for J as can be shown as follows. For any

real non-zero column vector z of length K we have

zTWz =
(

VTz
)T

C
(

VTz
)

> 0, (34)

because C is diagonal with positive elements. The term WD

is thus the product of a positive definite matrix (W) and a

diagonal positive semi-definite matrix (D); such a product is

positive semi-definite under the condition that it is normal

[16], which is satisfied here since WD is a real square

symmetric matrix. It follows that zTJz = zTz+zTWDz > 0.

However J is not generally an M-matrix, thus the condition

for global convergence of Newton’s method is not met [17].

In other words, in order to converge, the initial iterate must

lie sufficiently close to the actual solution. Quantifying this

condition for specific cases is notoriously difficult, but the

simulations indicate that using the previous value of s as the

initial iterate has proven fairly robust when ∆t ≤ 1/44.1ms.

G. Alternative Discretisation: A Three-Point Scheme

For the purpose of comparison, it is worthwhile considering

an alternative approach that starts by directly discretising (7).

For order-preserving methods, this will generally lead to a so-

called three-point scheme, which utilises both ȳn and ȳn−1

in the update of the new value ȳn+1. Here we discretise (7)

as follows:

m̄
δδȳni
∆2

t

+ r̄i
µδȳni
2∆t

+ k̄iȳ
n
i = F̄n

i . (35)

To counter-act the numerical dispersion for this scheme, the

following adjusted modal elasticity and damping values have

to be used

k̄∗i =
2m̄

∆2
t

[

1−
2Ri cos(ωi∆t)

1 +R2
i

]

, r̄∗i =
2m̄

∆t

[

1−R2
i

1 +R2
i

]

. (36)

The contact force densities now have to be formulated at time

t = n∆t. The natural choice for this is

Fn
b,k = −

µδVn
b,k

µδyn
b,k

= −
Vb(y

n+1

b,k )− Vb,k(y
n−1

b,k )

yn+1

b,k − yn−1

b,k

. (37)
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Fig. 1. Snapshots of the string motion of an ideal string colliding with a
straight barrier, with contact parameters kb = 109N/m2 and χ = 1 and string
parameters L = 0.5m, ρA = 5 × 10−4kg/m, and T = 64N. Left: full string
profile. The snapshots were taken at 0ms (dark blue), 0.272ms (red), 0.408ms
(yellow), 0.544ms (purple), 0.680ms (green), 0.816ms (light blue), 0.952ms
(dark red), and 1.088ms (black). Right: zoomed view of the contact zone at
t = 0.952ms; the black dots indicate the discrete spatial points of the model.
In both plots, the grey shaded area represents the barrier.

As before, these equations can be combined in vector-matrix

form. Now taking s̄ = ȳn+1 − ȳn−1, one arrives at

s̄n+1 = ū+ ξ∆xCVT
F

n, (38)

where ū = Aȳn − Cȳn−1, with Aii = 2Ri cos(ωi∆t) and

Cii = 1 +R2
i . The nonlinear equation to be solved is

s− u+∆xξW
Vb(s+ yn−1)− Vb(y

n−1)

s
= 0, (39)

with u = Vū and where W = VCVT is positive semi-

definite, thus (39) has a unique solution. A numerical energy

balance again exists, however this time with an energy-like

quantity defined at mid-point, i.e.

∆−1
t

[

Hn+1

2 −Hn−1

2

]

= −Qn, (40)

where

Hn+1

2 = 1

4
ξ
−1

[

(δȳn+1

2 )Tδȳn+1

2 + (ȳn+1)TΥȳn
]

+ 1

2
∆x1

T
[

Vb(y
n+1) + Vb(y

n)
]

, (41)

Qn = 1

4
ξ
−1

∆t
−1

(δδȳn)
T
Λδδȳn. (42)

The diagonal matrices Υ and Γ in (41,42) have the elements

Υii = k̄∗i∆
2
t/m̄ and Λii = r̄∗i∆t/(2m̄), respectively. Even

though the string potential energy term in (41) can become

negative, the numerical Hamiltonian Hn+1

2 is guaranteed non-

negative due to the quadratic form of the modal energy terms

in combination with the fact that |k̄∗i∆
2
t/m̄− 2| ≤ 2.

IV. SIMULATION RESULTS

A. An Ideal String Colliding with a Straight Barrier

In order to validate the numerical models and test their

general behaviours, they are applied to the case of an ideal

string (i.e. no stiffness or damping) colliding with a straight

rigid barrier. It is known that if the string is initialised with

its first mode shape, with the amplitude twice as large as the

distance between the string and the barrier, then a periodic

motion results, with the period 1.5 times longer than that

of an unimpeded string [18]. Fig. 1 shows a selection of

snapshots during the first 1.1ms of the simulation using the

two-point scheme with a 44.1kHz sampling frequency and
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y
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,t

) 
[m

m
]

-2

0

2

time [ms]

0 1 2 3 4 5 6 7 8

y
(L

/2
,t
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m
]

-2

0

2

Fig. 2. String displacement at x=L/2, as simulated with fs = 44.1kHz (red
line). The blue dashed line indicates the displacement for free string motion.
Top: two-point scheme. Bottom: three-point scheme; the black dashed line
indicates the result obtained with the mode series truncated at 20kHz.

setting K=M . As can be seen from the right plot, the string

compression is of the order of micrometres in this case.

Fig. 2 plots the two-point and three-point scheme against the

analytical result for an unimpeded string. For a rigid boundary,

the curves should match up after two periods of oscillation.

The two-point scheme produces the correct waveform but with

a slightly longer cycle time. This is due to the boundary not

being perfectly rigid, resulting in slightly elongated collision

times than would have been the case for kb → ∞. The three-

point scheme gives a similar result, but with spurious high-

frequency oscillations appearing with increasing amplitude

during the simulation. This can be remedied in this case by

reducing the number of modes, for example by truncating the

mode series at 20kHz (see the black dashed in the lower plot

of 2). It is noted however that in other cases the mode cut-off

has to be as low as fs/4 in order to avoid such artefacts.

B. A Sitar-like String-Barrier Configuration

A Sitar string experiences sustained impactive interaction

with a curved bridge [19]. Such a configuration is modelled

here, be it with altered dimensions for clarity/visibility. Using

again a unity exponent in the contact law, the value for kb
is approximately of the order of the smallest of the Young’s

moduli of the materials involved, and as such set here to

109N/m2. Fig. 3 shows the string motion during the first 1.3ms,

as simulated using the two-point scheme at 44.1kHz. For both

schemes, the modes were truncated at 20kHz.

The evolution of the string force at x = L, which can

be considered as a first approximation to the sound of the

instrument, is shown in Fig. 4. As the comparisons with

heavily oversampled results indicate, the two-point scheme

simulation again exhibits less spurious oscillation.

V. CONCLUDING REMARKS

Distributed string-barrier contact has been incorporated in a

provably stable manner in a numerical model based on modal

expansion of the solution to the equation of motion of a stiff,

lossy string. Of the two presented ways of discretising the

equations, the two-point scheme employs the more accurate
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Fig. 3. Snapshots of the string motion of a stiff, damped string colliding with
a 30mm long parabolic barrier with profile yb(x) = −

1

4
x(x − 0.03), using

K = 10. The contact and string parameters are kb = 109N/m2, χ = 1,
L = 0.5m, ρA = 5.55 × 10−4kg/m, EI = 7.95 × 105Nm2, T = 50N,
σ0 = 0.6s−1, σ1 = 6.5 × 10−3m/s, and σ3 = 5.0 × 10−6m3/s. Left:
full string profile. Right: zoomed view of the contact zone. The black dashed
line in both plots indicates the string equilibrium. The snapshots were taken at
0ms (dark blue), 0.317ms (red), 0.476ms (yellow), 0.635ms (purple), 0.793ms
(green), 0.952ms (light blue), 1.111ms (dark red), and 1.270ms (black).

approximation of the contact forces. The simulation results in-

dicate that this brings benefits regarding avoidance of spurious

high-frequency oscillations. A Matlab code has been made

available on the accompanying webpage1allowing readers to

explore these findings in more detail.

For simplicity, contact damping was omitted here but adding

this (using a Hunt-Crossely form as in [10]) in order to model

semi-elastic collisions is straightforward. The maximum num-

ber of iterations required for solving the nonlinear equation

to a machine-precision tolerance in s is typically about 9 for

the two-point scheme and 12 for the three-point scheme. In

practice such extreme precision may not be necessary and in

many cases the maximum number of iterations can be set to

a slightly lower value. An important additional note to make

here is that both schemes may suffer from non-convergence of

the iterative solver; for example, this occurs with the sitar-like

configuration for fs = 44.1kHz when the contact elasticity is

increased to kb=1010N/m2 or higher. In such cases, a damped

version of Newton’s method [17] can be employed, at the cost

of a slight increase in computational effort.

In comparison with finite-difference schemes, the proposed

models achieve a higher accuracy in the modal parameters.

However this has to be weighed up against the advantage of

finite difference models systematically having sparse system

matrices. In particular the fact that the Jacobian of the iterative

solver used in the modal formulations presented here is

generally non-sparse implies computational load ramifications.

Regarding model extensions, of particular interest are (a)

adding a tension modulation term, bringing with it a range

of further nonlinear effects [14], and (b) also modelling a

stopping finger, and for some instruments, a set of frets. As

recently discussed in a finite difference context by Bilbao and

Torin [20], such a more general setting presents increased

challenges regarding solving the multivariate non-linear equa-

tion (i.e. issues related to uniqueness and convergence), with

further concerns arising around the impact that such extensions

have on the efficiency of the model.

1www.socasites.qub.ac.uk/mvanwalstijn/eusipco16/
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Fig. 4. String force at x=L, as simulated at fs = 44.1kHz (red line) and fs =
705.6kHz (black line). Top: two-point scheme. Bottom: three-point scheme.
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