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Abstract—The existing robust technique, Scalar Reconciliation
combined with a Continuous-Variable Quantum Key Distribution
is investigated in this paper with the help of simulations in terms
of the symbol error rate. The solution contains efficient logical
layer-based reconciliation for Continuous-Variable Quantum Key
Distribution techniques, which extract the binary information
from correlated Gaussian variables. The algorithm has been
extended by different assumptions related to the raw data
generation method and the segmentation of the key symbols to
be transmitted. The performance of the extended algorithm has
been investigated in terms of the symbol error ratio.
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I. INTRODUCTION

The Quantum Key Distribution (QKD) solutions play key

role in the world of practical applications of quantum informa-

tion theory, allowing unconditionally secret communication by

exploiting the fundamental attributes of quantum mechanics.

The QKD protocols are classified into two main groups:

Discrete-Variable (DV) and Continuous-Variable Quantum

Key Distribution (CVQKD) systems. DV QKD protocols are

based on discrete variables (photon polarization). In a CVQKD

the information is encoded on continuous variables with the

help of Gaussian modulation. In this case the modulation and

decoding of continuous variables does not require specialized

equipments and can be realized effectively in current commu-

nication systems.

We can divide the CVQKD protocols for two further types:

one-way and two-way systems. In a one-way CVQKD system

Alice (transmitter) sends the continuous variables to Bob

(receiver) over a quantum channel [1], [2], [3]. In a two-

way system, Bob starts to communicate, Alice receives the

message and adds the secret information to that, the result is

then sent back to Bob. The two-way CVQKD systems [4],

[5], [6], [7] were introduced to solve the deficiencies of one-

way CVQKD, such as low key rates and short communication

distances. The CVQKD schemes apply continuous-variable

Gaussian modulation, providing provably optimal key rates

against collective attacks at finite-size block lengths, and also

maximizing the mutual information between Alice and Bob.

A key part of the CVQKD is post-processing, which corrects

the effects of the noise, appearing as errors in the raw data.

Raw data is a correlated bitstring at Alice’s and Bob’s side,

generated as a results of random quadrature measurements.

Each measurement is represented as a unit in the raw data.

The raw data contains no secret information. The secret key is

a uniformly distributed binary string, which will be combined

with the raw data elements. During the post-processing phase

we use classical-authenticated communication channel and

classical error-correction algorithms. The logical-layer based

post-processing corresponds to the tomography in the physical

layer, and it consists of the reconciliation procedure with

error-correction steps, and privacy amplification. The theory of

the logical layer-based reconciliation enables also to view the

noise affected physical quantum channel as a binary Gaussian

channel in the logical layer [1], [2], [3], resulting that classical

well-known error correction techniques can be involved into

CVQKD, which would not be available for the physical-

layer tomography to extract the binary information from the

correlated Gaussian variables.

The noisy raw data on the quantum channel shall be

corrected in order to get the secret key. The amount of raw data

bits is considerably large, hence the complexity of the post-

processing phase should be as low as possible. The existing

solutions need complex calculations for the reconciliation of

Gaussian variables. The error correction in the reconciliation

phase consists of two phases: First, the binary-channel codes

(low-density parity-check (LDPC), turbo codes, polar codes,

etc. [1], [2], [3]). Second, the correction of the erroneous

received raw-data vector passed through the quantum channel.

The authors of [8] focused on the second phase, considering

the reconciliation problem analogous to the binary-channel

coding, they replaced the complicated physical-layer tomog-

raphy in the logical level by simpler binary error-correction

schemes. Current paper introduces additional assumptions for

the distribution of the raw data, and gives different segmenta-

tion methods of the key information to be transmitted. Finally,

the results of a simulation-investigations of the extended

CVQKD solution are provided in [8].

This paper is organized as follows: Section II contains the

block diagram and the variables of the algorithm’s mathemat-

ical model defined in [8], in Section III we propose different

random distributions for the raw data elements, Section IV

describes the transmission of the key sequence on the classical

channel and provides different methods for the segmentation

of the information. In Section V the reception method on the
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Fig. 1. Block scheme of the quantum key distribution

classical channel is described, followed by simulation results

related to the different assumptions for the raw data generation

and key segmentations.

II. SYSTEM MODEL

In this section we provide a mathematical model for the

Continuous-Variable Quantum Key Distribution solution intro-

duced in [8] focusing on the exact definition of the variables.

The block scheme of the key transmission can be observed at

Fig. 1. During the operation Bob initiates the reconciliation

process (upper arrows from right to left), after the quantum

communication ends (lower arrows from left to right). This

diagram illustrates a reconciliation process in a one-way

CVQKD.

At the block scheme uB ∈ R refers to the secret key

symbol of Bob to be transmitted towards Alice on the classical

channel, which can be generated with the help of Amplitude

Shift Keying (ASK), based on a pre-defined input bit sequence.

During an observed transmission period a single uB symbol

will be transmitted. The received key-symbol will be denoted

by uA ∈ R. The vector

x
A = (xA

1 , ..., x
A
i , ..., x

A
d ) ∈ R

d (1)

contains d pieces of raw data elements at Alice’s side. In

addition

n = (n1, ..., ni, ..., nd) ∈ R
d (2)

represents d size noise vector at the quantum channel, con-

taining independent and identically distributed (i.i.d.) Gaussian

Random Variables (RVs) with 0 mean and N
(q)
0 variance.

The raw data of Bob is contained in the d sized vector

x
B = (xB

1 , ..., x
B
i , ..., x

B
d) ∈ R

d, (3)

we define it according to

x
B = x

A + n. (4)

The k length bit sequence b
(k)
t represents the input of the

channel encoder, the n length b
(n)
t bit sequence means the

output of the channel encoder, both at Bob’s side. At the

side of Alice, the channel decoder has an n length input bit

sequence b
(n)
r and a b

(k)
r output bit sequence with length of

k.

The mod.+n/ log2(M) convert block contains an M level

ASK modulator and a buffer. During its operation it stores the

n length b
(n)
t bit sequences, transforms them to bit sequences

with length of log2(M) and modulates them. Its output is the

uB key symbol.

The functional element demod.+log2(M)/n convert in-

volves an M -ASK demodulator and a buffer; it generates

log2(M) length bit sequences based on the uA key symbols,

stores them and transforms to n length b
(n)
r bit sequences.

The F−1(.) and F(.) blocks will be introduced later in (16)).

”C channel” and ”Q channel” are representing the classical-

and quantum channels respectively.

III. INFORMATION ON THE QUANTUM CHANNEL

The elements of the d length x
A = (xA

1 , ..., x
A
i , ..., x

A
d ) ∈ R

d

vector, containing Alice’s raw data will be generated according

to the following different distributions:

A. Truncated Gaussian distribution

The raw data elements will be modeled as Gaussian RVs

with 0 mean and σ2
xA

variance, which will be adjusted

during the simulations based on the noise energy and the

desired Signal-to-Noise-Ratio (SNR). The truncation happens

according a to pre-defined
√

Emax
XA

maximal signal level on

the quantum channel, under that the transmission still have a

’quantum-behvaiour’. A discrete signal can be defined by the

raw data elements, which has an energy of

EXA
=

N
∑

i=1

∣

∣xA
i

∣

∣

2
, (5)

considering N samples.

In case of the Gaussian raw data generation the energy

amount above can be calculated as

EXA
≈ Nσ2

xA
, (6)

as long as
√

Emax
XA

>> σ2
xA

, i.e. in this case the interval of

the truncation does not affect significantly the energy of the

Gaussian raw data signal.

B. Uniform distribution

In this case the raw data elements will be gener-

ated according to uniform distribution with the interval of
[

−√Emax
XA

,
√

Emax
XA

]

.

The energy of N samples of generated discrete signal xi

elements according to a continuous uniform distribution on

the [a, b] interval can be expressed as

Ex = N
1

(b− a)

∫ b

a

x2du = N
1

(b − a)

[

x3

3

]b

a

= N
b3 − a3

3(b− a)
,

(7)

for b > a.

By substituting the interval of the raw data elements (i.e.

b = −a =
√

Emax
XA

), we get the energy of N elements from

the raw data at Alice’s side, which can be calculated in this

case as

EXA
= N

Emax
XA

3
. (8)

Note that the energy expressions above will be used to set

a desired SNR value during the simulations (see eq. (18)).
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IV. INFORMATION ON THE CLASSICAL CHANNEL

This section contains the description of the transmission on

the classical channel involving the modulation and different

segmentation models of the uB key symbols.

A. Modulation

During the modeling of the modulation process we generate

the bit sequence b
(k)
t according to discrete uniform distribution

from the set 0 and 1, representing the input of the channel

encoder.

The channel encoder will provide the b
(k)
t bit sequence

based on a selected encoding method. Using the b
(k)
t bit

sequence we generate uB (real valued) key symbols with the

help of an M = 2k level ASK modulator.

Note that the application of ASK can be explained by the

real (i.e. not complex) property of uB. That is Quadrature

Amplitude Modulation (QAM) cannot be applied, since in that

case we would get complex key symbols.

B. Segmentation of the key symbols

In the following, we transmit a single uB symbol during a

single transmission step over the classical channel, segmented

into d elements. For this segmentation we define the following

three different ways.

1) Uniform distribution, determining the last element: A

segmentation is performed on symbol uB, after which we get

the sum of

uB =

d
∑

i=1

uB
i . (9)

Our goal in ideal case would be that the uB
i elements are

uniform RVs with the sum ’accidentally’ equal to uB.

Unfortunately this task cannot be performed practically. To

solve this problem, and get ’almost’ random uB
i values, we do

the following: we generate the first d− 1 elements of the sum

above according to continuous uniform RVs on the interval

[a, b].

After that we determine the last element according to

uB
d = uB −

d−1
∑

i=1

uB
i . (10)

In this case the equation (9) will be true, i.e. we get the

previously generated value of the key symbol uB.

With the last step of the solution above, the uniformity will

be violated for the uB
i elements, which could be a harmful

fact in terms of security. We attempt to compensate this effect

with the following: let us hide the position of the last (i.e. uB
d )

element within the vector

u
B = (uB

1 , ..., u
B
i , ..., u

B
d), (11)

which has been resulted by the segmentation defined in (9).

In practice we randomly permutate the indexes of the uB
i

elements, which does not affect the correct demodulation.

2) Uniform distribution by normalization: The sum-

elements of the uB key symbols to be actually transmitted

on the classical channel will be generated according to the

following method. We generate uniform RVs, followed by

a normalization which realizes the fact that the sum of the

elements will be uB =
∑d

i=1 u
B
i as in (9).

During this solution, firstly we generate uB,pre
i continuous

uniform RVs on a defined [a, b] interval. In this case to reach

that the sum of uB
i elements will be exactly uB, we should

normalize the pre-generated u
B,pre
i elements according to

uB
i = uB u

B,pre
i

∑d

i=1 u
B,pre
i

. (12)

3) Uniform distribution, considering signum: Let us gen-

erate information for the input of the classical channel based

on the actual uB ∈ [−1, 1] symbol to be transmitted in such

a way, that we generate d pieces of uB
i elements according to

continuous uniform distribution.

After this step, if the sign of the sum
∑d

i=1 u
B
i of the

generated elements is the same as the sign of the actual uB

symbol, the symbol to be transmitted will have this new value.

In other case each uB
i elements will be multiplied by (−1).

Note that this method can be applied only in case of Binary

Phase Shift Keying (BPSK), since the demodulator performs

the decision based only on the sign of the received symbol.

In this case we ’get back’ the uB ∈ [−1, 1] elements at the

receiver side.

C. Signal level on the classical channel

Let us define a function C(.) for the elements of vectors xA

and x
B, which performs random variable transformation [8].

The aim of the transformation is to reach a uniform distribution

of the raw data elements on the interval [0, 1] in order to fit

the level of the signal generated based on the raw data to

the quantum channel. For the different raw data generation

solutions we define different C(.) functions.

1) Gaussian raw data: The raw data elements are generated

according to Gaussian distribution with 0 mean and σ2
xB

variance.

In this case we define the following function for the raw

data vector elements x
B at Bob’s side

C(xB
i ) =

1

2

(

1 + erf

(

xB
i

√

2σ2
xB

))

, (13)

where erf(x) = 2
π

∫ x

0
et

2

dt.
2) Uniform raw data: We have previously generated uni-

formly distributed raw data elements on the interval [au, bu].
For this case the transformation – which realizes the goal

defined above – can be defined by the next steps:

1) The generated raw data elements will be ’shifted’ to the

0 ’starting position’, i.e. we add −au to each values.

2) We ’normalize the values’ to 1: the values resulted by

the first step will be divided by (bu − au). That is

C(xB
i ) =

xB
i − au

(bu − au)
(14)
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Example: let the raw data elements positioned within the

interval [−3, 2] uniformly. After executing the first step, the

elements will be located in the interval [0, 5]. After that the

elements will be divided by 5. Finally, each elements will be

in the interval [0, 1].

After one of the transformations above, the si information

elements to be transmitted on the classical channel can be

expressed according to the product

si = C(xB
i )u

B
i . (15)

It is visible, that the maximal signal level of the elements

uB
i generated after the key-vector partitioning will not be

influenced by the C(xB
i ) multiplier, since it can have values

only between 0 and 1.

V. RECEPTION ON THE CLASSICAL CHANNEL

After the previous operations the uA Alice’s side received

symbol (see Fig. 1) can be expressed as

uA =
d
∑

i=1

si
C(xA

i )
=

d
∑

i=1

C(xB
i )

C(xA
i )

uB
i . (16)

A. The SNR on the classical channel

The SNR on the classical channel is set to γdB = Es

N0

=
40 dB, where Es represents the symbol energy, N0 refers to the

spectral power density (in [W/Hz]=[J]) of the Gaussian noise

on the classical channel. I.e. we add Gaussian noise to the

received signal at the classical channel, before demodulation

and after the key transmission. This SNR value is large enough

to ensure a considerably low bitrate (around 10−8) with the

help of BPSK on a classical Additive White Gaussian Noise

(AWGN) channel.

From that, N0 is set to

N0 =
Es

10
γ
10

=
1

10
40

10

= 10−4 [W/Hz]. (17)

B. The SNR on the quantum channel

The measured γq SNR on the quantum channel can be

defined as the ratio of the energies at Alice-side raw data-

and the noise samples on the quantum channel, i.e.

γq =
EXA

Enq

=

∑N

i=1

∣

∣xA
i

∣

∣

2

∑N

i=1

∣

∣

∣
n
(q)
i

∣

∣

∣

2 , (18)

calculating with the raw data and noise vector elements,

where n
(q)
i refers to the i-th sample of the noise at the

quantum channel. The numerator of the expression above

contains the energy amounts in equations (6) and (7) during

the calculations.

In order to operate the key distribution with low Symbol-

Error-Ratio (SER) and maintain the quantum-nature of the

transmission, we should set the maximal Emax
XA

transmitter side

energy of the xA
i raw data elements.

VI. SIMULATION

After introducing different generating methods for the raw

data and solutions for the key symbol segmentation we

provide, we describe the key simulation parameters for the

classical and the quantum channels respectively and illustrate

the results of the simulation in terms of the SER of the key

symbol transmission.

A. Simulation Parameters

We provide the main parameters for the different channels

and probability distributions in order the create a simulation

scenario, enabling the comparability of the different simula-

tions in terms of the SNR.

1) Parameters on the classical channel: The symbol energy

on the classical channel for the BPSK modulation is set to

Es = 1 [J], i.e. the signal levels for the two possible symbols

are −
√
Es and

√
Es.

We set the interval of the uniform distributed random

variables for the break-up of uB vector in (9) as

[au, bu] = [−
√

Es,
√

Es]. (19)

2) Parameters on the quantum channel: In order to reach

the desired γq SNR during the simulations based on (18) and

for a fixed level of Enq
noise energy, we should set the

EXA
= γqEnq

(20)

value. In case of different random distributions, different

parameters should be set to reach the goal above in terms

of the SNR.

For Gaussian distribution the variance of the raw data can

be defined based on (6) as

σ2
xA

≈ EXA

N
=

γqEnq

N

≈ γqσ
2
n ,

(21)

since we know that Enq
= Nσ2

n.

If the raw data is uniformly distributed, the
√

Emax
XA

limits

of the symmetric interval of the raw data can be calculated

based on (7) as

√

Emax
XA

=

√

3EXA

N
=

√

3γqEnq

N
=

√

3γqNσ2
n

N

=
√

3γqσ2
n .

(22)

B. Simulation results

At Fig. 2 we provide the results of the simulations during

which we have investigated the SER of the key transmission

by adjusting the γq,dB SNR at the quantum channel.

The figure contains SER curves for the cases of two different

distributions of the raw data elements (Section III) and by

implementing different the key segmentation methods (see

IV-B). According to the described raw data generation methods

and key symbol segmentation we have six different cases for

the key transmission. The SER curves are suggesting that
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Fig. 2. Illustration of the Symbol-Error-Ratio in case of different Signal-to-
Noise-Ratio values at the quantum channel for various raw data distributions
and key segmentation methods

the transmission with (truncated) Gaussian raw data elements

provides better SER performance in each cases compared

to the uniform distribution. In case of the key segmentation

the method with normalization (IV-B2) outperforms the two

others, i.e. ’det’ (IV-B1) and ’sign’ (IV-B3), which have

intersection points, providing adaptive switching between them

in terms of the SNR.

VII. CONCLUSIONS

The Continuous-Variable Quantum Key Distribution algo-

rithm proposed in [8] has been implemented first during the

evaluating work of the current paper. A MATLAB simulation

environment has been implemented to provide a tool for the

further investigation of the CVQKD algorithm. Different meth-

ods have been introduced to generate the raw data elements

and the segmentation of the key symbol in order to provide

tools and ideas for the development of the key distribution

algorithm.
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